Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model.

Wei Peng, Ehsan Adeli, Tomas Bosschieter, Sang Hyun Park, Qingyu Zhao, Kilian M Pohl
{"title":"Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model.","authors":"Wei Peng, Ehsan Adeli, Tomas Bosschieter, Sang Hyun Park, Qingyu Zhao, Kilian M Pohl","doi":"10.1007/978-3-031-43993-3_2","DOIUrl":null,"url":null,"abstract":"<p><p>As acquiring MRIs is expensive, neuroscience studies struggle to attain a sufficient number of them for properly training deep learning models. This challenge could be reduced by MRI synthesis, for which Generative Adversarial Networks (GANs) are popular. GANs, however, are commonly unstable and struggle with creating diverse and high-quality data. A more stable alternative is Diffusion Probabilistic Models (DPMs) with a fine-grained training strategy. To overcome their need for extensive computational resources, we propose a conditional DPM (cDPM) with a memory-efficient process that generates realistic-looking brain MRIs. To this end, we train a 2D cDPM to generate an MRI subvolume conditioned on another subset of slices from the same MRI. By generating slices using arbitrary combinations between condition and target slices, the model only requires limited computational resources to learn interdependencies between slices even if they are spatially far apart. After having learned these dependencies via an attention network, a new anatomy-consistent 3D brain MRI is generated by repeatedly applying the cDPM. Our experiments demonstrate that our method can generate high-quality 3D MRIs that share a similar distribution to real MRIs while still diversifying the training set. The code is available at https://github.com/xiaoiker/mask3DMRI_diffusion and also will be released as part of MONAI, at https://github.com/Project-MONAI/GenerativeModels.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14227 ","pages":"14-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43993-3_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As acquiring MRIs is expensive, neuroscience studies struggle to attain a sufficient number of them for properly training deep learning models. This challenge could be reduced by MRI synthesis, for which Generative Adversarial Networks (GANs) are popular. GANs, however, are commonly unstable and struggle with creating diverse and high-quality data. A more stable alternative is Diffusion Probabilistic Models (DPMs) with a fine-grained training strategy. To overcome their need for extensive computational resources, we propose a conditional DPM (cDPM) with a memory-efficient process that generates realistic-looking brain MRIs. To this end, we train a 2D cDPM to generate an MRI subvolume conditioned on another subset of slices from the same MRI. By generating slices using arbitrary combinations between condition and target slices, the model only requires limited computational resources to learn interdependencies between slices even if they are spatially far apart. After having learned these dependencies via an attention network, a new anatomy-consistent 3D brain MRI is generated by repeatedly applying the cDPM. Our experiments demonstrate that our method can generate high-quality 3D MRIs that share a similar distribution to real MRIs while still diversifying the training set. The code is available at https://github.com/xiaoiker/mask3DMRI_diffusion and also will be released as part of MONAI, at https://github.com/Project-MONAI/GenerativeModels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过条件扩散概率模型生成逼真的大脑 MRI 图像
由于磁共振成像的获取成本高昂,神经科学研究很难获得足够数量的磁共振成像来正确训练深度学习模型。通过磁共振成像合成可以减少这一挑战,生成对抗网络(GAN)在这方面很受欢迎。然而,GANs 通常不稳定,难以创建多样化和高质量的数据。更稳定的替代方案是采用细粒度训练策略的扩散概率模型(DPM)。为了克服对大量计算资源的需求,我们提出了一种条件 DPM(cDPM),它具有记忆效率高的过程,能生成逼真的大脑 MRI。为此,我们对二维 cDPM 进行训练,以生成以同一 MRI 的另一个切片子集为条件的 MRI 子卷。通过使用条件切片和目标切片之间的任意组合生成切片,该模型只需要有限的计算资源就能学习切片之间的相互依存关系,即使它们在空间上相距甚远。通过注意力网络学习到这些依赖关系后,重复应用 cDPM 就能生成新的解剖一致的三维大脑 MRI。实验证明,我们的方法可以生成高质量的三维核磁共振成像,其分布与真实核磁共振成像相似,同时还能使训练集多样化。代码可在 https://github.com/xiaoiker/mask3DMRI_diffusion 上获取,也将作为 MONAI 的一部分在 https://github.com/Project-MONAI/GenerativeModels 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1