The AMPK and AKT/GSK3β pathways are involved in recombinant proteins fibroblast growth factor 1 (rFGF1 and rFGF1a) improving glycolipid metabolism in rainbow trout (Oncorhynchus mykiss) fed a high carbohydrate diet
{"title":"The AMPK and AKT/GSK3β pathways are involved in recombinant proteins fibroblast growth factor 1 (rFGF1 and rFGF1a) improving glycolipid metabolism in rainbow trout (Oncorhynchus mykiss) fed a high carbohydrate diet","authors":"Huixia Yu, Shuo Geng, Shuai Li, Yingwei Wang, Xin Ren, Debin Zhong, Haolin Mo, Mingxing Yao, Jiajia Yu, Yang Li, Lixin Wang","doi":"10.1016/j.aninu.2023.10.009","DOIUrl":null,"url":null,"abstract":"<p>Fibroblast growth factor 1 (FGF1) regulates vertebrate cell growth, proliferation and differentiation, and energy metabolism. In this study, we cloned rainbow trout (<em>Oncorhynchus mykiss</em>) <em>fgf1</em> and <em>fgf1a</em>, prepared their recombinant proteins (rFGF1 and rFGF1a), and described the molecular mechanisms by which they improve glycolipid metabolism in carnivorous fish. A 31-day feeding trial was conducted to investigate whether they could enhance glycolipid metabolism in rainbow trout on high-carbohydrate diets (HCD). The 720 rainbow trout (8.9 ± 0.5 g) were equally divided into four groups: the chow diet (CD) group received PBS, the HCD group received PBS, the HCD group received rFGF1 (400 ng/g body weight), and the HCD group received rFGF1a (400 ng/g body weight). The results showed that short-term HCD had a significant positive effect on the specific growth rate (SGR) of rainbow trout (<em>P</em> < 0.05). However, it led to an increase in crude fat, serum triglyceride (TG) and glucose content, as well as serum glutamic pyruvic transaminase (GPT) and glutamic oxalacetic transaminase (GOT) contents (<em>P <</em> 0.05), suggesting a negative health effect of HCD. Nevertheless, rFGF1 and rFGF1a showed beneficial therapeutic effects. They significantly reduced the crude fat content of the liver, serum TG, GOT, and GPT contents caused by HCD (<em>P</em> < 0.05). The upregulation in <em>atgl</em>, <em>hsl</em>, and <em>acc2</em> mRNAs implied the promotion of TG catabolism. Moreover, rFGF1 and rFGF1a contributed to promoting lipolysis by activating the AMPK pathway and reducing lipid accumulation in the liver caused by HCD. In addition, the rFGF1 and rFGF1a-treated groups significantly reduced serum glucose levels and elevated hepatic glycogen content under HCD, and increased glucose uptake by hepatocytes. We observed a decrease in mRNA levels for <em>pepck</em>, <em>g6pase</em>, and <em>pygl,</em> along with an increase in mRNA for <em>gys</em>, <em>glut2</em>, and <em>gk</em> in the liver. Furthermore, these proteins regulate hepatic gluconeogenesis and glycogen synthesis by increasing the phosphorylation level of AKT, ultimately leading to an increase in GSK3β phosphorylation. In conclusion, this study demonstrates that rFGF1 and rFGF1a can enhance lipolysis and glucose utilization in rainbow trout by activating the AMPK pathway and AKT/GSK3β axis.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"27 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2023.10.009","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast growth factor 1 (FGF1) regulates vertebrate cell growth, proliferation and differentiation, and energy metabolism. In this study, we cloned rainbow trout (Oncorhynchus mykiss) fgf1 and fgf1a, prepared their recombinant proteins (rFGF1 and rFGF1a), and described the molecular mechanisms by which they improve glycolipid metabolism in carnivorous fish. A 31-day feeding trial was conducted to investigate whether they could enhance glycolipid metabolism in rainbow trout on high-carbohydrate diets (HCD). The 720 rainbow trout (8.9 ± 0.5 g) were equally divided into four groups: the chow diet (CD) group received PBS, the HCD group received PBS, the HCD group received rFGF1 (400 ng/g body weight), and the HCD group received rFGF1a (400 ng/g body weight). The results showed that short-term HCD had a significant positive effect on the specific growth rate (SGR) of rainbow trout (P < 0.05). However, it led to an increase in crude fat, serum triglyceride (TG) and glucose content, as well as serum glutamic pyruvic transaminase (GPT) and glutamic oxalacetic transaminase (GOT) contents (P < 0.05), suggesting a negative health effect of HCD. Nevertheless, rFGF1 and rFGF1a showed beneficial therapeutic effects. They significantly reduced the crude fat content of the liver, serum TG, GOT, and GPT contents caused by HCD (P < 0.05). The upregulation in atgl, hsl, and acc2 mRNAs implied the promotion of TG catabolism. Moreover, rFGF1 and rFGF1a contributed to promoting lipolysis by activating the AMPK pathway and reducing lipid accumulation in the liver caused by HCD. In addition, the rFGF1 and rFGF1a-treated groups significantly reduced serum glucose levels and elevated hepatic glycogen content under HCD, and increased glucose uptake by hepatocytes. We observed a decrease in mRNA levels for pepck, g6pase, and pygl, along with an increase in mRNA for gys, glut2, and gk in the liver. Furthermore, these proteins regulate hepatic gluconeogenesis and glycogen synthesis by increasing the phosphorylation level of AKT, ultimately leading to an increase in GSK3β phosphorylation. In conclusion, this study demonstrates that rFGF1 and rFGF1a can enhance lipolysis and glucose utilization in rainbow trout by activating the AMPK pathway and AKT/GSK3β axis.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.