Pub Date : 2023-11-08DOI: 10.1016/j.aninu.2023.10.003
Modinat T. Lambo, Haokai Ma, Haosheng Zhang, Peng Song, Hongxiang Mao, Guowen Cui, Baisheng Dai, Yang Li, Yonggen Zhang
Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal’s performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM’s nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.
{"title":"Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry","authors":"Modinat T. Lambo, Haokai Ma, Haosheng Zhang, Peng Song, Hongxiang Mao, Guowen Cui, Baisheng Dai, Yang Li, Yonggen Zhang","doi":"10.1016/j.aninu.2023.10.003","DOIUrl":"https://doi.org/10.1016/j.aninu.2023.10.003","url":null,"abstract":"<p>Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal’s performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM’s nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"56 4","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72365788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1016/j.aninu.2023.10.002
Amlan Kumar Patra, Luana Paula dos Santos Ribeiro, Yirga Hirut, Adekayode O. Sonibare, Ahmed R. Askar, Ali H. Hussein, Ryszard Puchala, Arthur Louis Goetsch
Understanding how different livestock species and breeds respond to consumption of brackish water could improve usage of this resource. Therefore, Angora, Boer, and Spanish goat doelings and Dorper, Katahdin, and St. Croix ewe lambs (6 animals per animal type [AT]; initial age = 296 ± 2.1 days) consuming water with varying concentrations of minerals of a natural brackish water source (BR) and sodium chloride (NaCl; SL) were used to determine effects on water and feed intake, nutrient digestion, heat energy, methane emission, ruminal fluid conditions, and blood constituent concentrations. There were 6 simultaneous 6 (water treatments [WT]) × 6 (AT) Latin squares with 3-wk periods. The WT were fresh (FR), BR alone (100-BR), a similar total dissolved solids (TDS) concentration as 100-BR via NaCl addition to FR (100-SL), BR with concentrations of all minerals increased by approximately 50% (150-BR), a similar TDS level as 150-BR by NaCl addition to FR (150-SL), and a similar 150 TDS level achieved by addition of a 1:1 mixture of BR minerals and NaCl to 100-BR (150-BR/SL). Concentrations (mg/kg) in BR were 4928 TDS, 85.9 bicarbonate, 224.9 calcium, 1175 chloride, 60.5 magnesium, 4.59 potassium, 1387 sodium, 1962 sulfate, and 8.3 boron, and TDS in other WT were 209, 5684, 7508, 8309, and 7319 for FR, 100-SL, 150-BR, 150-SL, and 150-BR/SL, respectively. There were very few significant effects of WT or AT × WT interactions, although AT had numerous effects. Water intake was affected by AT (P = 0.02) and WT (P = 0.04) with greater water intake for 150-SL than for FR, 100-BR, 100-SL, and 150-BR. Dry matter intake among AT was lowest (P < 0.05) for Angora. Digestion of organic matter and neutral detergent fiber and heat energy differed among AT (P < 0.05), but nitrogen digestion and ruminal methane emission were similar among AT. Blood aldosterone concentration was higher (P < 0.05) for FR than for other WT. In conclusion, all AT seemed resilient to these WT regardless of mineral source and concentrations, with TDS less than 8300 mg/kg, which did not influence nutrient utilization, ruminal fermentation, energy balance, or blood constituent levels.
{"title":"Effects of the concentration and nature of total dissolved solids in drinking water on feed intake, nutrient digestion, energy balance, methane emission, ruminal fermentation, and blood constituents in different breeds of young goats and hair sheep","authors":"Amlan Kumar Patra, Luana Paula dos Santos Ribeiro, Yirga Hirut, Adekayode O. Sonibare, Ahmed R. Askar, Ali H. Hussein, Ryszard Puchala, Arthur Louis Goetsch","doi":"10.1016/j.aninu.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.aninu.2023.10.002","url":null,"abstract":"<p>Understanding how different livestock species and breeds respond to consumption of brackish water could improve usage of this resource. Therefore, Angora, Boer, and Spanish goat doelings and Dorper, Katahdin, and St. Croix ewe lambs (6 animals per animal type [AT]; initial age = 296 ± 2.1 days) consuming water with varying concentrations of minerals of a natural brackish water source (BR) and sodium chloride (NaCl; SL) were used to determine effects on water and feed intake, nutrient digestion, heat energy, methane emission, ruminal fluid conditions, and blood constituent concentrations. There were 6 simultaneous 6 (water treatments [WT]) × 6 (AT) Latin squares with 3-wk periods. The WT were fresh (FR), BR alone (100-BR), a similar total dissolved solids (TDS) concentration as 100-BR via NaCl addition to FR (100-SL), BR with concentrations of all minerals increased by approximately 50% (150-BR), a similar TDS level as 150-BR by NaCl addition to FR (150-SL), and a similar 150 TDS level achieved by addition of a 1:1 mixture of BR minerals and NaCl to 100-BR (150-BR/SL). Concentrations (mg/kg) in BR were 4928 TDS, 85.9 bicarbonate, 224.9 calcium, 1175 chloride, 60.5 magnesium, 4.59 potassium, 1387 sodium, 1962 sulfate, and 8.3 boron, and TDS in other WT were 209, 5684, 7508, 8309, and 7319 for FR, 100-SL, 150-BR, 150-SL, and 150-BR/SL, respectively. There were very few significant effects of WT or AT × WT interactions, although AT had numerous effects. Water intake was affected by AT (<em>P</em> = 0.02) and WT (<em>P</em> = 0.04) with greater water intake for 150-SL than for FR, 100-BR, 100-SL, and 150-BR. Dry matter intake among AT was lowest (<em>P</em> < 0.05) for Angora. Digestion of organic matter and neutral detergent fiber and heat energy differed among AT (<em>P <</em> 0.05), but nitrogen digestion and ruminal methane emission were similar among AT. Blood aldosterone concentration was higher (<em>P <</em> 0.05) for FR than for other WT. In conclusion, all AT seemed resilient to these WT regardless of mineral source and concentrations, with TDS less than 8300 mg/kg, which did not influence nutrient utilization, ruminal fermentation, energy balance, or blood constituent levels.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"30 36","pages":""},"PeriodicalIF":6.3,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71492552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}