{"title":"Chronic sub lethal nerve agent (Soman) exposure induced long-term neurobehavioral, histological, and biochemical alterations in rats","authors":"RamaRao Golime , Naveen Singh , Ankush Rajput , Nagar DP , Vinod K. Lodhi","doi":"10.1016/j.jchemneu.2024.102388","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Organophosphorus (OP) pesticides and insecticides are used in agriculture and other industries can also cause adverse effects through environmental exposures in the people working in agricultural and pesticide industries. OP nerve agent exposures have been associated with delayed neurotoxic effects including sleep disorders, cognitive malfunctions, and </span>brain damage<span><span> in Gulf War victims, and Japanese victims of terrorist attacks with nerve agents. However, the mechanisms behind such prolonged adverse effects after chronic OP nerve agent’s exposures in survivors are not well understood. In the present study, male Wistar rats were subcutaneously exposed to nerve agent </span>soman (0.25XLD</span></span><sub>50</sub><span><span><span><span>) for 21 consecutive days to evaluate the neurobehavioral, neuropathological and biochemical alterations (oxidative stress and antioxidants levels). Neurobehavioral studies using Elevated Plus Maze (EPM), T-Maze, and </span>rotarod tests<span> revealed that chronic soman exposure produced alterations in behavioral functions including increased anxiety and reduction in working memory and neuromuscular<span> strength. Biochemical studies showed that antioxidants enzyme (glutathione peroxidase (GPx), </span></span></span>catalase<span><span> (CAT), and superoxide dismutase (SOD) levels were reduced and </span>oxidative stress<span> (reduced glutathione (GSH) and lipid peroxidation levels (malondialdehyde (MDA)) were significantly increased in brain at 30 days in soman exposed rats as compared to control rats. Neuroselective fluorojade-c stain was used to examine the brain damage after chronic soman exposure. Results demonstrated that chronic soman exposure induced </span></span></span>neurodegeneration as brain damage was detected at 30- and 90-days post exposure. The present study results suggest that chronic nerve agent exposures even at low doses may produce long-term adverse effects like neurobehavioral deficits in rats.</span></p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":"136 ","pages":"Article 102388"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphorus (OP) pesticides and insecticides are used in agriculture and other industries can also cause adverse effects through environmental exposures in the people working in agricultural and pesticide industries. OP nerve agent exposures have been associated with delayed neurotoxic effects including sleep disorders, cognitive malfunctions, and brain damage in Gulf War victims, and Japanese victims of terrorist attacks with nerve agents. However, the mechanisms behind such prolonged adverse effects after chronic OP nerve agent’s exposures in survivors are not well understood. In the present study, male Wistar rats were subcutaneously exposed to nerve agent soman (0.25XLD50) for 21 consecutive days to evaluate the neurobehavioral, neuropathological and biochemical alterations (oxidative stress and antioxidants levels). Neurobehavioral studies using Elevated Plus Maze (EPM), T-Maze, and rotarod tests revealed that chronic soman exposure produced alterations in behavioral functions including increased anxiety and reduction in working memory and neuromuscular strength. Biochemical studies showed that antioxidants enzyme (glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) levels were reduced and oxidative stress (reduced glutathione (GSH) and lipid peroxidation levels (malondialdehyde (MDA)) were significantly increased in brain at 30 days in soman exposed rats as compared to control rats. Neuroselective fluorojade-c stain was used to examine the brain damage after chronic soman exposure. Results demonstrated that chronic soman exposure induced neurodegeneration as brain damage was detected at 30- and 90-days post exposure. The present study results suggest that chronic nerve agent exposures even at low doses may produce long-term adverse effects like neurobehavioral deficits in rats.
期刊介绍:
The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches.
Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples.
The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.