Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Hearing Research Pub Date : 2024-01-03 DOI:10.1016/j.heares.2024.108948
Huey Tieng Tan , Paul F. Smith , Yiwen Zheng
{"title":"Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats","authors":"Huey Tieng Tan ,&nbsp;Paul F. Smith ,&nbsp;Yiwen Zheng","doi":"10.1016/j.heares.2024.108948","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using <em>in vivo</em> microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524000017","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using in vivo microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声创伤和耳鸣对大鼠下丘细胞外氨基酸水平的时间依赖性影响
慢性耳鸣是一种使人衰弱的疾病,治疗方法很少。导致耳鸣的声创伤已被证明会诱发听觉通路多个脑区的神经元过度活跃,包括下丘。这种神经元亢进可归因于兴奋性和抑制性神经传递之间的失衡。然而,神经递质的水平,尤其是细胞外空间的神经递质水平,在声创伤和耳鸣发生后随着时间的推移如何变化,目前尚不清楚。本研究采用体内微透析和高效液相色谱法测量了声创伤期间以及创伤后 1 周和 5 个月时大鼠下丘中的一系列氨基酸。此外,还测量了大鼠在创伤后 1 周和 5 个月时对声音刺激所产生的氨基酸水平。研究发现,单侧暴露于115 dB SPL的16 kHz纯音1小时后,所有动物的听力都会立即下降,58%的动物会出现慢性耳鸣。与假听力状态相比,声创伤后急性期和1周后细胞外GABA水平均显著增加。然而,在创伤后 5 个月,假、耳鸣阳性和耳鸣阴性动物之间所测得的氨基酸水平均无明显差异。神经化学变化与声频/声创伤/耳鸣状态之间的关系也没有明显的模式,这可能是由于微透析的时间分辨率相对电生理反应较低所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
期刊最新文献
Cross-sectional screening for inflammation in tinnitus with near-normal hearing Frequency dependence and harmonic distortion of stapes displacement and intracochlear pressure in response to very high level sounds Auditory changes in awake guinea pigs exposed to overcompressed music Editorial Board Effects of ipsilateral, contralateral, and bilateral noise precursors on psychoacoustical tuning curves in humans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1