{"title":"Chebyshev unions of planes, and their approximative and geometric properties","authors":"A.R. Alimov , I.G. Tsar’kov","doi":"10.1016/j.jat.2023.106009","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study approximative and geometric properties of Chebyshev sets composed of at most countably many planes (i.e., closed affine subspaces). We will assume that the union of planes is irreducible, i.e., no plane in this union contains another plane from the union. We show, in particular, that if a Chebyshev subset </span><span><math><mi>M</mi></math></span><span> of a Banach space </span><span><math><mi>X</mi></math></span> consists of at least two planes, then it is not <span><math><mi>B</mi></math></span>-connected (i.e., its intersection with some closed ball is disconnected) and is not <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>̊</mo></mrow></mover></math></span>-complete. We also verify that, in reflexive <span><math><mrow><mo>(</mo><mi>CLUR</mi><mo>)</mo></mrow></math></span>-spaces (and, in particularly, in complete uniformly convex spaces), a set composed of countably many planes is not a Chebyshev set. For finite unions, we show that any finite union of planes (involving at least two planes) is not a Chebyshev set for any norm on the space. Several applications of our results in the spaces <span><math><mrow><mi>C</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> are also given.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904523001478","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study approximative and geometric properties of Chebyshev sets composed of at most countably many planes (i.e., closed affine subspaces). We will assume that the union of planes is irreducible, i.e., no plane in this union contains another plane from the union. We show, in particular, that if a Chebyshev subset of a Banach space consists of at least two planes, then it is not -connected (i.e., its intersection with some closed ball is disconnected) and is not -complete. We also verify that, in reflexive -spaces (and, in particularly, in complete uniformly convex spaces), a set composed of countably many planes is not a Chebyshev set. For finite unions, we show that any finite union of planes (involving at least two planes) is not a Chebyshev set for any norm on the space. Several applications of our results in the spaces , and are also given.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.