Pub Date : 2026-01-22DOI: 10.1016/j.jat.2026.106285
JinYan Miao, Silvestru Sever Dragomir
<div><div>We first prove the best constant <span><math><mi>C</mi></math></span> in a Landau type inequality <span><span><span><math><mrow><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>5</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msubsup><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>3</mn></mrow></msubsup><msub><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><msub><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>and with similar approach, we prove the best constants in a more general form <span><span><span><math><mrow><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>2</mn><mo>+</mo><mi>η</mi></mrow></msubsup><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>η</mi></mrow></msub><msubsup><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>η</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>η</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mi>η</mi></mrow></msubsup></mrow></math></span></span></span>for all <span><math><mrow><mn>0</mn><mo>≤</mo><mi>η</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. Here we have the direct expression for each of the best constants <span><span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow><mrow><mi>η</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>+</mo><mi>η</mi></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>−</mo><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>η</mi></mrow></msup></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>where <span><span><span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mn>3</mn><mi>η</mi><mo>−</mo><msqrt><mrow><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>η</mi><mo>+</mo><mn>9</mn></mrow></msqrt></mrow><mrow><mn>8</mn><mo>+</mo><mn>4</mn><mi>η</mi></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>A Landau type inequality and another special cas
{"title":"Best constants in a class of Landau type inequalities","authors":"JinYan Miao, Silvestru Sever Dragomir","doi":"10.1016/j.jat.2026.106285","DOIUrl":"10.1016/j.jat.2026.106285","url":null,"abstract":"<div><div>We first prove the best constant <span><math><mi>C</mi></math></span> in a Landau type inequality <span><span><span><math><mrow><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>5</mn></mrow></msubsup><mo>≤</mo><mi>C</mi><msubsup><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>3</mn></mrow></msubsup><msub><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><msub><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>and with similar approach, we prove the best constants in a more general form <span><span><span><math><mrow><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>2</mn><mo>+</mo><mi>η</mi></mrow></msubsup><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>η</mi></mrow></msub><msubsup><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>η</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>η</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msup><mrow><mi>f</mi></mrow><mrow><mo>′</mo><mo>′</mo><mo>′</mo></mrow></msup><mo>‖</mo></mrow><mrow><mi>∞</mi></mrow><mrow><mi>η</mi></mrow></msubsup></mrow></math></span></span></span>for all <span><math><mrow><mn>0</mn><mo>≤</mo><mi>η</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. Here we have the direct expression for each of the best constants <span><span><span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow><mrow><mi>η</mi></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mo>+</mo><mi>η</mi></mrow></msup></mrow><mrow><mn>2</mn><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>−</mo><msubsup><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>/</mo><mn>3</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>+</mo><mi>η</mi></mrow></msup></mrow></mfrac><mo>,</mo></mrow></math></span></span></span>where <span><span><span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>3</mn><mo>+</mo><mn>3</mn><mi>η</mi><mo>−</mo><msqrt><mrow><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>η</mi><mo>+</mo><mn>9</mn></mrow></msqrt></mrow><mrow><mn>8</mn><mo>+</mo><mn>4</mn><mi>η</mi></mrow></mfrac><mo>.</mo></mrow></math></span></span></span>A Landau type inequality and another special cas","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"317 ","pages":"Article 106285"},"PeriodicalIF":0.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146039782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-22DOI: 10.1016/j.jat.2026.106284
Patrick L. Combettes, Julien N. Mayrand
The Haraux function is an important tool in monotone operator theory and its applications. One of its salient properties for a maximally monotone operator is to be valued in and to vanish only on the graph of the operator. Sharper lower bounds for this function have been proposed in specific cases. We derive lower bounds in the general context of set-valued operators in reflexive real Banach spaces. These bounds are new, even for maximally monotone operators acting on Euclidean spaces, a scenario in which we show that they can be better than existing ones. As a by-product, we obtain lower bounds on the Fenchel–Young function in variational analysis. Several examples are given and applications to composite monotone inclusions are discussed.
{"title":"Lower bounds on the Haraux function","authors":"Patrick L. Combettes, Julien N. Mayrand","doi":"10.1016/j.jat.2026.106284","DOIUrl":"10.1016/j.jat.2026.106284","url":null,"abstract":"<div><div>The Haraux function is an important tool in monotone operator theory and its applications. One of its salient properties for a maximally monotone operator is to be valued in <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>]</mo></mrow></math></span> and to vanish only on the graph of the operator. Sharper lower bounds for this function have been proposed in specific cases. We derive lower bounds in the general context of set-valued operators in reflexive real Banach spaces. These bounds are new, even for maximally monotone operators acting on Euclidean spaces, a scenario in which we show that they can be better than existing ones. As a by-product, we obtain lower bounds on the Fenchel–Young function in variational analysis. Several examples are given and applications to composite monotone inclusions are discussed.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"315 ","pages":"Article 106284"},"PeriodicalIF":0.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146077058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-08DOI: 10.1016/j.jat.2025.106282
Pedro Morin , Cornelia Schneider , Nick Schneider
We investigate anisotropic (piecewise) polynomial approximation of functions in Lebesgue spaces as well as anisotropic Besov spaces. For this purpose we study temporal and spatial moduli of smoothness and their properties. In particular, we prove Jackson- and Whitney-type inequalities on Lipschitz cylinders, i.e., space–time domains with a finite interval and a bounded Lipschitz domain , . As an application, we prove a direct estimate result for adaptive space–time finite element approximation in the discontinuous setting.
{"title":"Anisotropic approximation on space–time domains","authors":"Pedro Morin , Cornelia Schneider , Nick Schneider","doi":"10.1016/j.jat.2025.106282","DOIUrl":"10.1016/j.jat.2025.106282","url":null,"abstract":"<div><div>We investigate anisotropic (piecewise) polynomial approximation of functions in Lebesgue spaces as well as anisotropic Besov spaces. For this purpose we study temporal and spatial moduli of smoothness and their properties. In particular, we prove Jackson- and Whitney-type inequalities on Lipschitz cylinders, i.e., space–time domains <span><math><mrow><mi>I</mi><mo>×</mo><mi>D</mi></mrow></math></span> with a finite interval <span><math><mi>I</mi></math></span> and a bounded Lipschitz domain <span><math><mrow><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>, <span><math><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. As an application, we prove a direct estimate result for adaptive space–time finite element approximation in the discontinuous setting.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"317 ","pages":"Article 106282"},"PeriodicalIF":0.6,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145969435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-03DOI: 10.1016/j.jat.2025.106283
Shelby Kilmer, Xingping Sun, Matthew Wright
We study strictly positive definite functions of finite orders on real inner product spaces. Via exploring new connections to theories of Chebyshev ranks and Schur polynomials, we obtain quantifiable conditions for such functions. To assist field scientists in selecting an ideal multivariate polynomial interpolant, we propose and study the notions of “interpolating rank” and “minimal seminorm interpolation.” We quantify both Chebyshev ranks and interpolating ranks in terms of the number of common zeros of a certain finite collection of Schur polynomials. As a byproduct, we develop a mechanism to construct positive-rank Chebyshev systems of which examples are scarce in the literature.
{"title":"Strictly positive definite functions of finite orders and multivariate polynomial interpolation","authors":"Shelby Kilmer, Xingping Sun, Matthew Wright","doi":"10.1016/j.jat.2025.106283","DOIUrl":"10.1016/j.jat.2025.106283","url":null,"abstract":"<div><div>We study strictly positive definite functions of finite orders on real inner product spaces. Via exploring new connections to theories of Chebyshev ranks and Schur polynomials, we obtain quantifiable conditions for such functions. To assist field scientists in selecting an ideal multivariate polynomial interpolant, we propose and study the notions of “interpolating rank” and “minimal seminorm interpolation.” We quantify both Chebyshev ranks and interpolating ranks in terms of the number of common zeros of a certain finite collection of Schur polynomials. As a byproduct, we develop a mechanism to construct positive-rank Chebyshev systems of which examples are scarce in the literature.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"315 ","pages":"Article 106283"},"PeriodicalIF":0.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145925083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-26DOI: 10.1016/j.jat.2025.106279
Frederic Schoppert
In a recent article, we have shown that a variety of localized polynomial frames, including isotropic as well as directional spherical systems, are suitable for detecting jump discontinuities that lie along circles on the sphere. More precisely, such edges can be identified in terms of their position and orientation by the asymptotic decay of the frame coefficients in an arbitrary small neighborhood. In this paper, we will extend these results to discontinuities which lie along general smooth curves. In particular, we prove upper and lower estimates for the frame coefficients when the analysis function is concentrated in the vicinity of such a singularity. The estimates are given in an asymptotic sense, with respect to some dilation parameter, and they hold uniformly in a neighborhood of the smooth curve segment under consideration.
{"title":"Edge detection with polynomial frames on the sphere","authors":"Frederic Schoppert","doi":"10.1016/j.jat.2025.106279","DOIUrl":"10.1016/j.jat.2025.106279","url":null,"abstract":"<div><div>In a recent article, we have shown that a variety of localized polynomial frames, including isotropic as well as directional spherical systems, are suitable for detecting jump discontinuities that lie along circles on the sphere. More precisely, such edges can be identified in terms of their position and orientation by the asymptotic decay of the frame coefficients in an arbitrary small neighborhood. In this paper, we will extend these results to discontinuities which lie along general smooth curves. In particular, we prove upper and lower estimates for the frame coefficients when the analysis function is concentrated in the vicinity of such a singularity. The estimates are given in an asymptotic sense, with respect to some dilation parameter, and they hold uniformly in a neighborhood of the smooth curve segment under consideration.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"315 ","pages":"Article 106279"},"PeriodicalIF":0.6,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}