首页 > 最新文献

Journal of Approximation Theory最新文献

英文 中文
A note on diffusion limits for stochastic gradient descent
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-27 DOI: 10.1016/j.jat.2025.106160
Alberto Lanconelli, Christopher S.A. Lauria
In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.
{"title":"A note on diffusion limits for stochastic gradient descent","authors":"Alberto Lanconelli,&nbsp;Christopher S.A. Lauria","doi":"10.1016/j.jat.2025.106160","DOIUrl":"10.1016/j.jat.2025.106160","url":null,"abstract":"<div><div>In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106160"},"PeriodicalIF":0.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative asymptotics of multiple orthogonal polynomials for Nikishin systems of two measures
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-18 DOI: 10.1016/j.jat.2025.106158
A. López García , G. López Lagomasino
We study the relative asymptotics of two sequences of multiple orthogonal polynomials corresponding to two Nikishin systems of measures on the real line, the second one of which is obtained from the first one perturbing the generating measures with non-negative integrable functions. Each Nikishin system consists of two measures.
{"title":"Relative asymptotics of multiple orthogonal polynomials for Nikishin systems of two measures","authors":"A. López García ,&nbsp;G. López Lagomasino","doi":"10.1016/j.jat.2025.106158","DOIUrl":"10.1016/j.jat.2025.106158","url":null,"abstract":"<div><div>We study the relative asymptotics of two sequences of multiple orthogonal polynomials corresponding to two Nikishin systems of measures on the real line, the second one of which is obtained from the first one perturbing the generating measures with non-negative integrable functions. Each Nikishin system consists of two measures.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106158"},"PeriodicalIF":0.9,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Pearcey integral in the highly oscillatory region II
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.jat.2025.106150
Chelo Ferreira , José L. López , Ester Pérez Sinusía
We consider the Pearcey integral P(x,y) for large values of |x| and bounded values of |y|. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of P(x,y) for large |x|, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex xplane in two different sectors in which P(x,y) behaves differently when |x| is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of x and y. Both of them are of Poincaré type; one of them is given in terms of inverse powers of x; the other one in terms of inverse powers of x1/2, and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.
我们考虑的是 Pearcey 积分 P(x,y),适用于 |x| 的大值和 |y| 的有界值。标准的鞍点分析难以应用,因为皮尔斯积分在这一区域高度振荡。为了克服这个问题,我们采用了 López 等人(2009 年)提出的修正鞍点方法。我们得出了 P(x,y) 在大|x|时的完整渐近展开,并给出了斯托克斯线的精确位置。有两条斯托克斯线将复 x 平面划分为两个不同的扇形区域,当 |x| 较大时,P(x,y) 在这两个扇形区域的表现不同。近似值是两个近似级数之和,其项是 x 和 y 的初等函数。这两个近似级数都是 Poincaré 类型;其中一个用 x 的反幂表示,另一个用 x1/2 的反幂表示,并乘以一个指数因子,在上述两个扇形中表现不同。一些数值实验说明了近似值的准确性。
{"title":"The Pearcey integral in the highly oscillatory region II","authors":"Chelo Ferreira ,&nbsp;José L. López ,&nbsp;Ester Pérez Sinusía","doi":"10.1016/j.jat.2025.106150","DOIUrl":"10.1016/j.jat.2025.106150","url":null,"abstract":"<div><div>We consider the Pearcey integral <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for large values of <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span> and bounded values of <span><math><mrow><mo>|</mo><mi>y</mi><mo>|</mo></mrow></math></span>. The standard saddle point analysis is difficult to apply because the Pearcey integral is highly oscillating in this region. To overcome this problem we use the modified saddle point method introduced in López et al. (2009). A complete asymptotic analysis is possible with this method, and we derive a complete asymptotic expansion of <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> for large <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span>, accompanied by the exact location of the Stokes lines. There are two Stokes lines that divide the complex <span><math><mrow><mi>x</mi><mo>−</mo></mrow></math></span>plane in two different sectors in which <span><math><mrow><mi>P</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> behaves differently when <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span> is large. The asymptotic approximation is the sum of two asymptotic series whose terms are elementary functions of <span><math><mi>x</mi></math></span> and <span><math><mi>y</mi></math></span>. Both of them are of Poincaré type; one of them is given in terms of inverse powers of <span><math><mi>x</mi></math></span>; the other one in terms of inverse powers of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, and it is multiplied by an exponential factor that behaves differently in the two mentioned sectors. Some numerical experiments illustrate the accuracy of the approximation.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"309 ","pages":"Article 106150"},"PeriodicalIF":0.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates for entropy numbers of sets of smooth functions on complex spheres
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-13 DOI: 10.1016/j.jat.2025.106151
Deimer J.J. Aleans , Sergio A. Tozoni
<div><div>In this paper we investigate the asymptotic behavior of entropy numbers of multiplier operators <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> and <span><math><mi>Λ</mi></math></span>, defined for functions on the complex sphere <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> of <span><math><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, associated with sequences of multipliers of the type <span><math><msub><mrow><mrow><mo>{</mo><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><mrow><msubsup><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mi>λ</mi><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mrow><mo>{</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mi>λ</mi><mrow><mo>(</mo><mo>max</mo><mrow><mo>{</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>, respectively, for a bounded function <span><math><mi>λ</mi></math></span> defined on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></math></span>. If the operators <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> and <span><math><mi>Λ</mi></math></span> are bounded from <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> into <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mi>∞</mi></mrow></math></span>, and <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is the closed unit ball of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, we study lower and upper estimates for the entropy numbers of the sets <span><math><mrow><msub><mrow><mi>Λ</mi></mrow><mrow><mo>∗</mo></mrow></msub><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>Λ</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi
{"title":"Estimates for entropy numbers of sets of smooth functions on complex spheres","authors":"Deimer J.J. Aleans ,&nbsp;Sergio A. Tozoni","doi":"10.1016/j.jat.2025.106151","DOIUrl":"10.1016/j.jat.2025.106151","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper we investigate the asymptotic behavior of entropy numbers of multiplier operators &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, defined for functions on the complex sphere &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ℂ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, associated with sequences of multipliers of the type &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, respectively, for a bounded function &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; defined on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. If the operators &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are bounded from &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; into &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is the closed unit ball of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, we study lower and upper estimates for the entropy numbers of the sets &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Λ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;U&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106151"},"PeriodicalIF":0.9,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-11 DOI: 10.1016/j.jat.2025.106149
Jacek Gulgowski , Anna Kamont , Markus Passenbrunner
<div><div>Let <span><math><mrow><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>ℱ</mi><mo>,</mo><mi>P</mi><mo>)</mo></mrow></math></span> be a probability space and let <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> be a binary filtration. i.e. exactly one atom of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> is divided into <em>two</em> atoms of <span><math><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by <span><math><mi>A</mi></math></span>. Let <span><math><mrow><mi>S</mi><mo>⊂</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> be a finite-dimensional linear subspace, having an additional stability property on atoms <span><math><mi>A</mi></math></span>. For these data, we consider two dictionaries: <ul><li><span>•</span><span><div><span><math><mrow><mi>C</mi><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mi>⋅</mi><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>:</mo><mi>f</mi><mo>∈</mo><mi>S</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>A</mi><mo>}</mo></mrow></mrow></math></span>,</div></span></li><li><span>•</span><span><div><span><math><mi>Φ</mi></math></span> – a local orthonormal system generated by <span><math><mi>S</mi></math></span> and the filtration <span><math><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ℱ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span>.</div></span></li></ul></div><div>Let <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>C</mi><mo>=</mo><msub><mrow><mover><mrow><mi>span</mi></mrow><mo>¯</mo></mover></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub><mi>Φ</mi></mrow></math></span>, with <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>. We are interested in approximation spaces <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow><mo>,</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mrow><mo>
{"title":"Properties of local orthonormal systems, Part II: Geometric characterization of Bernstein inequalities","authors":"Jacek Gulgowski ,&nbsp;Anna Kamont ,&nbsp;Markus Passenbrunner","doi":"10.1016/j.jat.2025.106149","DOIUrl":"10.1016/j.jat.2025.106149","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ℱ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a probability space and let &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℱ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; be a binary filtration. i.e. exactly one atom of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℱ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; is divided into &lt;em&gt;two&lt;/em&gt; atoms of &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℱ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; without any restriction on their respective measures. Additionally, denote the collection of atoms corresponding to this filtration by &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a finite-dimensional linear subspace, having an additional stability property on atoms &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. For these data, we consider two dictionaries: &lt;ul&gt;&lt;li&gt;&lt;span&gt;•&lt;/span&gt;&lt;span&gt;&lt;div&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;1&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;,&lt;/div&gt;&lt;/span&gt;&lt;/li&gt;&lt;li&gt;&lt;span&gt;•&lt;/span&gt;&lt;span&gt;&lt;div&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; – a local orthonormal system generated by &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and the filtration &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ℱ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;/span&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;span&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;span&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;¯&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;Φ&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We are interested in approximation spaces &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106149"},"PeriodicalIF":0.9,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measure-preserving mappings from the unit cube to some symmetric spaces
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-07 DOI: 10.1016/j.jat.2025.106145
Carlos Beltrán , Damir Ferizović , Pedro R. López-Gómez
We construct measure-preserving mappings from the d-dimensional unit cube to the d-dimensional unit ball and the compact rank one symmetric spaces, namely the d-dimensional sphere, the real, complex, and quaternionic projective spaces, and the Cayley plane. We also give a procedure to generate measure-preserving mappings from the d-dimensional unit cube to product spaces and fiber bundles under certain conditions.
{"title":"Measure-preserving mappings from the unit cube to some symmetric spaces","authors":"Carlos Beltrán ,&nbsp;Damir Ferizović ,&nbsp;Pedro R. López-Gómez","doi":"10.1016/j.jat.2025.106145","DOIUrl":"10.1016/j.jat.2025.106145","url":null,"abstract":"<div><div>We construct measure-preserving mappings from the <span><math><mi>d</mi></math></span>-dimensional unit cube to the <span><math><mi>d</mi></math></span>-dimensional unit ball and the compact rank one symmetric spaces, namely the <span><math><mi>d</mi></math></span>-dimensional sphere, the real, complex, and quaternionic projective spaces, and the Cayley plane. We also give a procedure to generate measure-preserving mappings from the <span><math><mi>d</mi></math></span>-dimensional unit cube to product spaces and fiber bundles under certain conditions.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106145"},"PeriodicalIF":0.9,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling limits of complex and symplectic non-Hermitian Wishart ensembles
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-06 DOI: 10.1016/j.jat.2025.106148
Sung-Soo Byun , Kohei Noda
Non-Hermitian Wishart matrices were introduced in the context of quantum chromodynamics with a baryon chemical potential. These provide chiral extensions of the elliptic Ginibre ensembles as well as non-Hermitian extensions of the classical Wishart/Laguerre ensembles. In this work, we investigate eigenvalues of non-Hermitian Wishart matrices in the symmetry classes of complex and symplectic Ginibre ensembles. We introduce a generalised Christoffel–Darboux formula in the form of a certain second-order differential equation, offering a unified and robust method for analysing correlation functions across all scaling regimes in the model. By employing this method, we derive bulk and edge scaling limits for eigenvalue correlations at both strong and weak non-Hermiticity.
{"title":"Scaling limits of complex and symplectic non-Hermitian Wishart ensembles","authors":"Sung-Soo Byun ,&nbsp;Kohei Noda","doi":"10.1016/j.jat.2025.106148","DOIUrl":"10.1016/j.jat.2025.106148","url":null,"abstract":"<div><div>Non-Hermitian Wishart matrices were introduced in the context of quantum chromodynamics with a baryon chemical potential. These provide chiral extensions of the elliptic Ginibre ensembles as well as non-Hermitian extensions of the classical Wishart/Laguerre ensembles. In this work, we investigate eigenvalues of non-Hermitian Wishart matrices in the symmetry classes of complex and symplectic Ginibre ensembles. We introduce a generalised Christoffel–Darboux formula in the form of a certain second-order differential equation, offering a unified and robust method for analysing correlation functions across all scaling regimes in the model. By employing this method, we derive bulk and edge scaling limits for eigenvalue correlations at both strong and weak non-Hermiticity.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106148"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143348474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform convergence of Fourier–Jacobi series to absolutely continuous functions
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-06 DOI: 10.1016/j.jat.2025.106146
Magomed-Kasumov M.G
It is shown that for any absolutely continuous function on [1,1], the Fourier series with respect to the Jacobi polynomials Pnα,β converges uniformly on [1,1] to this function if and only if 1<α,β1/2, |αβ|1.
{"title":"Uniform convergence of Fourier–Jacobi series to absolutely continuous functions","authors":"Magomed-Kasumov M.G","doi":"10.1016/j.jat.2025.106146","DOIUrl":"10.1016/j.jat.2025.106146","url":null,"abstract":"<div><div>It is shown that for any absolutely continuous function on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, the Fourier series with respect to the Jacobi polynomials <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msubsup></math></span> converges uniformly on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span> to this function if and only if <span><math><mrow><mo>−</mo><mn>1</mn><mo>&lt;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>≤</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mrow><mo>|</mo><mi>α</mi><mo>−</mo><mi>β</mi><mo>|</mo></mrow><mo>≤</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106146"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On simultaneous density order from shift invariant subspaces in Sobolev spaces
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-02-06 DOI: 10.1016/j.jat.2025.106147
Ch. Boukeffous , A. San Antolín
The notion of simultaneous approximation order (m,k) from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order (m,k) was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order (m,k) and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.
{"title":"On simultaneous density order from shift invariant subspaces in Sobolev spaces","authors":"Ch. Boukeffous ,&nbsp;A. San Antolín","doi":"10.1016/j.jat.2025.106147","DOIUrl":"10.1016/j.jat.2025.106147","url":null,"abstract":"<div><div>The notion of simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> from shift-invariant subspaces in Sobolev spaces was introduced in the paper by Zhao (1995). Moreover, a characterization of those principal shift-invariant subspaces that provide simultaneous approximation order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> was proved there. In this note, we prove another characterization using dilated by some adequate expansive linear maps of a shift-invariant subspace. In addition, we introduce the notion of simultaneous density order <span><math><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and give necessary and sufficient conditions on a shift-invariant subspace to have a simultaneous density desired. To give our conditions, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of the generators of a shift-invariant subspace. For this, we will use the classical notion of approximate continuity.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"308 ","pages":"Article 106147"},"PeriodicalIF":0.9,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterated entropy derivatives and binary entropy inequalities
IF 0.9 3区 数学 Q2 MATHEMATICS Pub Date : 2025-01-13 DOI: 10.1016/j.jat.2025.106143
Tanay Wakhare
We embark on a systematic study of the (k+1)-th derivative of xkrH(xr), where H(x)xlogx(1x)log(1x) is the binary entropy and kr1 are integers. Our motivation is the conjectural entropy inequality αkH(xk)xk1H(x), where 0<αk<1 is given by a functional equation. The k=2 case was the key technical tool driving recent breakthroughs on the union-closed sets conjecture. We express dk+1dxk+1xkrH(xr) as a rational function, an infinite series, and a sum over generalized Stirling numbers. This allows us to reduce the proof of the entropy inequality for real k to showing that an associated polynomial has only two real roots in the interval (0,1), which also allows us to prove the inequality for fractional exponents such as k=3/2. The proof suggests a new framework for proving tight inequalities for the sum of polynomials times the logarithms of polynomials, which converts the inequality into a statement about the real roots of a simpler associated polynomial.
{"title":"Iterated entropy derivatives and binary entropy inequalities","authors":"Tanay Wakhare","doi":"10.1016/j.jat.2025.106143","DOIUrl":"10.1016/j.jat.2025.106143","url":null,"abstract":"<div><div>We embark on a systematic study of the <span><math><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-th derivative of <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>r</mi></mrow></msup><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≔</mo><mo>−</mo><mi>x</mi><mo>log</mo><mi>x</mi><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the binary entropy and <span><math><mrow><mi>k</mi><mo>≥</mo><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span> are integers. Our motivation is the conjectural entropy inequality <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow><mo>≥</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> is given by a functional equation. The <span><math><mrow><mi>k</mi><mo>=</mo><mn>2</mn></mrow></math></span> case was the key technical tool driving recent breakthroughs on the union-closed sets conjecture. We express <span><math><mrow><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow></mfrac><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>r</mi></mrow></msup><mi>H</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> as a rational function, an infinite series, and a sum over generalized Stirling numbers. This allows us to reduce the proof of the entropy inequality for real <span><math><mi>k</mi></math></span> to showing that an associated polynomial has only two real roots in the interval <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, which also allows us to prove the inequality for fractional exponents such as <span><math><mrow><mi>k</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></mrow></math></span>. The proof suggests a new framework for proving tight inequalities for the sum of polynomials times the logarithms of polynomials, which converts the inequality into a statement about the real roots of a simpler associated polynomial.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"307 ","pages":"Article 106143"},"PeriodicalIF":0.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Approximation Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1