{"title":"Two-photon Production in Low-velocity Shocks","authors":"S. R. Kulkarni, J. Michael Shull","doi":"10.1088/1538-3873/acff85","DOIUrl":null,"url":null,"abstract":"The Galactic interstellar medium abounds in shocks with low velocities <italic toggle=\"yes\">v</italic>\n<sub>\n<italic toggle=\"yes\">s</italic>\n</sub> ≲ 70 km s<sup>−1</sup>. Some are descendants of higher velocity shocks, while others start off at low velocity (e.g., stellar bow shocks, intermediate velocity clouds, spiral density waves). Low-velocity shocks cool primarily via Ly<italic toggle=\"yes\">α</italic> and two-photon continuum, augmented by optical recombination lines (e.g., H<italic toggle=\"yes\">α</italic>), forbidden lines of metals and free-bound emission, free–free emission. The dark far-ultraviolet (FUV) sky, aided by the fact that the two-photon continuum peaks at 1400 Å, makes the FUV band an ideal tracer of low-velocity shocks. GALEX FUV images reaffirm this expectation, discovering faint and large interstellar structure in old supernova remnants and thin arcs stretching across the sky. Interstellar bow shocks are expected from fast stars from the Galactic disk passing through the numerous gas clouds in the local interstellar medium within 15 pc of the Sun. Using the bests atomic data available to date, we present convenient fitting formulae for yields of Ly<italic toggle=\"yes\">α</italic>, two-photon continuum, and H<italic toggle=\"yes\">α</italic> for pure hydrogen plasma in the temperature range of 10<sup>4</sup>–10<sup>5</sup> K. The formulae presented here can be readily incorporated into time-dependent cooling models as well as collisional ionization equilibrium models.","PeriodicalId":20820,"journal":{"name":"Publications of the Astronomical Society of the Pacific","volume":"21 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of the Pacific","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1538-3873/acff85","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Galactic interstellar medium abounds in shocks with low velocities vs ≲ 70 km s−1. Some are descendants of higher velocity shocks, while others start off at low velocity (e.g., stellar bow shocks, intermediate velocity clouds, spiral density waves). Low-velocity shocks cool primarily via Lyα and two-photon continuum, augmented by optical recombination lines (e.g., Hα), forbidden lines of metals and free-bound emission, free–free emission. The dark far-ultraviolet (FUV) sky, aided by the fact that the two-photon continuum peaks at 1400 Å, makes the FUV band an ideal tracer of low-velocity shocks. GALEX FUV images reaffirm this expectation, discovering faint and large interstellar structure in old supernova remnants and thin arcs stretching across the sky. Interstellar bow shocks are expected from fast stars from the Galactic disk passing through the numerous gas clouds in the local interstellar medium within 15 pc of the Sun. Using the bests atomic data available to date, we present convenient fitting formulae for yields of Lyα, two-photon continuum, and Hα for pure hydrogen plasma in the temperature range of 104–105 K. The formulae presented here can be readily incorporated into time-dependent cooling models as well as collisional ionization equilibrium models.
期刊介绍:
The Publications of the Astronomical Society of the Pacific (PASP), the technical journal of the Astronomical Society of the Pacific (ASP), has been published regularly since 1889, and is an integral part of the ASP''s mission to advance the science of astronomy and disseminate astronomical information. The journal provides an outlet for astronomical results of a scientific nature and serves to keep readers in touch with current astronomical research. It contains refereed research and instrumentation articles, invited and contributed reviews, tutorials, and dissertation summaries.