{"title":"ML interpretability: Simple isn't easy","authors":"Tim Räz","doi":"10.1016/j.shpsa.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>The interpretability of ML models is important, but it is not clear what it amounts to. So far, most philosophers have discussed the lack of interpretability of black-box models such as neural networks, and methods such as explainable AI that aim to make these models more transparent. The goal of this paper is to clarify the nature of interpretability by focussing on the other end of the “interpretability spectrum”. The reasons why some models, linear models and decision trees, are highly interpretable will be examined, and also how more general models, MARS and GAM, retain some degree of interpretability. It is found that while there is heterogeneity in how we gain interpretability, what interpretability is in particular cases can be explicated in a clear manner.</p></div>","PeriodicalId":49467,"journal":{"name":"Studies in History and Philosophy of Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039368123001723/pdfft?md5=762e303beb843a4a645f0e00470c907b&pid=1-s2.0-S0039368123001723-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in History and Philosophy of Science","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039368123001723","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The interpretability of ML models is important, but it is not clear what it amounts to. So far, most philosophers have discussed the lack of interpretability of black-box models such as neural networks, and methods such as explainable AI that aim to make these models more transparent. The goal of this paper is to clarify the nature of interpretability by focussing on the other end of the “interpretability spectrum”. The reasons why some models, linear models and decision trees, are highly interpretable will be examined, and also how more general models, MARS and GAM, retain some degree of interpretability. It is found that while there is heterogeneity in how we gain interpretability, what interpretability is in particular cases can be explicated in a clear manner.
期刊介绍:
Studies in History and Philosophy of Science is devoted to the integrated study of the history, philosophy and sociology of the sciences. The editors encourage contributions both in the long-established areas of the history of the sciences and the philosophy of the sciences and in the topical areas of historiography of the sciences, the sciences in relation to gender, culture and society and the sciences in relation to arts. The Journal is international in scope and content and publishes papers from a wide range of countries and cultural traditions.