Characterization of an in vitro engineered ligament model

Q1 Medicine Matrix Biology Plus Pub Date : 2023-12-27 DOI:10.1016/j.mbplus.2023.100140
Alec M. Avey , Omar Valdez , Keith Baar
{"title":"Characterization of an in vitro engineered ligament model","authors":"Alec M. Avey ,&nbsp;Omar Valdez ,&nbsp;Keith Baar","doi":"10.1016/j.mbplus.2023.100140","DOIUrl":null,"url":null,"abstract":"<div><p><em>In vivo</em> tendon and ligament research can be limited by the difficultly of obtaining tissue samples that can be biochemically analyzed. In this study, we characterize the most widely used <em>in vitro</em> engineered ligament model. Despite previous works suggesting multiple passages change gene expression in 2D primary tenocytes, we found no relationship between passage number and expression of classical tendon fibroblast markers across different biological donors. When engineered into 3D ligaments, there was an increase in maximal tensile load between 7 and 14 days in culture, that corresponded with an increase in collagen content. By contrast, percent collagen increased logarithmically from Day 7 to Day 14, and this was similar to the increase in the modulus of the tissue. Importantly, there was no relationship between passage number and mechanical function or collagen content in the two independent donors tested. These results suggest that the model develops quickly and is reliable across differing passage numbers. This provides the field with the ability to 1) consistently determine functional changes of interventions out to passage number 10; and 2) to time interventions to the appropriate developmental stage: developing/regenerating (Day 7) or mature (Day 14) tissue.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"21 ","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028523000133/pdfft?md5=b6d704769d86e1e0c11806088a61213c&pid=1-s2.0-S2590028523000133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028523000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In vivo tendon and ligament research can be limited by the difficultly of obtaining tissue samples that can be biochemically analyzed. In this study, we characterize the most widely used in vitro engineered ligament model. Despite previous works suggesting multiple passages change gene expression in 2D primary tenocytes, we found no relationship between passage number and expression of classical tendon fibroblast markers across different biological donors. When engineered into 3D ligaments, there was an increase in maximal tensile load between 7 and 14 days in culture, that corresponded with an increase in collagen content. By contrast, percent collagen increased logarithmically from Day 7 to Day 14, and this was similar to the increase in the modulus of the tissue. Importantly, there was no relationship between passage number and mechanical function or collagen content in the two independent donors tested. These results suggest that the model develops quickly and is reliable across differing passage numbers. This provides the field with the ability to 1) consistently determine functional changes of interventions out to passage number 10; and 2) to time interventions to the appropriate developmental stage: developing/regenerating (Day 7) or mature (Day 14) tissue.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外工程韧带模型的特征描述
由于难以获得可进行生化分析的组织样本,体内肌腱和韧带研究受到限制。在本研究中,我们描述了最广泛使用的体外工程韧带模型的特征。尽管以前的研究表明多次传代会改变二维原代腱细胞的基因表达,但我们发现在不同的生物供体中,传代次数与经典肌腱成纤维细胞标记物的表达之间没有关系。当培养成三维韧带时,培养 7 到 14 天的最大拉伸负荷会增加,这与胶原蛋白含量的增加相对应。相比之下,从第 7 天到第 14 天,胶原蛋白的百分比呈对数增长,这与组织模量的增长相似。重要的是,在测试的两个独立供体中,通道数与机械功能或胶原蛋白含量之间没有关系。这些结果表明,该模型发展迅速,而且在不同细胞数的情况下都是可靠的。这为该领域提供了以下能力:1)持续确定干预措施在第 10 个阶段的功能变化;2)根据适当的发育阶段确定干预措施的时间:发育/再生组织(第 7 天)或成熟组织(第 14 天)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
期刊最新文献
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI) Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1