{"title":"New strategy for the biosynthesis of alternative feed protein: Single-cell protein production from straw-based biomass","authors":"Zherui Zhang, Xiaoyi Chen, Le Gao","doi":"10.1111/gcbb.13120","DOIUrl":null,"url":null,"abstract":"<p>With rapid growth of global population, meeting the increasing demand for food has become a significant challenge. This challenge is further compounded by limited arable land and the necessity to address the nutritional needs of both humans and animals. However, the utilization of straw biomass, which is readily available as an agricultural by-product, presents a sustainable solution to this problem. Microbial fermentation has emerged as a highly effective method for converting non-food biomass into protein, particularly known as single-cell protein (SCP). Compared to traditional protein sources, SCP production through microbial fermentation is rapid and efficient, and requires minimal land resources. This review provides a comprehensive review of the research advancements in SCP from agricultural biomass, including pretreatment methods, microbial strains, and fermentation processes involved in the bioconversion of straw biomass. Due to the complexity of straw-based biomass (SBB), it is essential to customize industrial strains and optimize the fermentation process to achieve the highest protein yield and productivity. Additionally, improving the compatibility between tailored processes and cost-effective industrial strains can lead to the production of protein substitutes that are not only highly nutritious but also economically viable. Hence, the application of SCP derived from SBB presents a dual solution by reducing the need for managing agricultural residues and providing a sustainable source of protein. However, the production of SCP from SBB also has some limitations, such as protein-synthesis efficiency, production cost, and difficulty to scale-up the production process. In the future, there is great potential for significant advancements in the targeted conversion of SBB into protein by customizing high-performance microbial strains. Several sensor and machine learning technologies will predict and monitor real-time dynamic changes in the fermentation process of SBB, offering an opportunity to improve the production of sustainable SCP in an environmentally friendly and precise manner.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13120","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
With rapid growth of global population, meeting the increasing demand for food has become a significant challenge. This challenge is further compounded by limited arable land and the necessity to address the nutritional needs of both humans and animals. However, the utilization of straw biomass, which is readily available as an agricultural by-product, presents a sustainable solution to this problem. Microbial fermentation has emerged as a highly effective method for converting non-food biomass into protein, particularly known as single-cell protein (SCP). Compared to traditional protein sources, SCP production through microbial fermentation is rapid and efficient, and requires minimal land resources. This review provides a comprehensive review of the research advancements in SCP from agricultural biomass, including pretreatment methods, microbial strains, and fermentation processes involved in the bioconversion of straw biomass. Due to the complexity of straw-based biomass (SBB), it is essential to customize industrial strains and optimize the fermentation process to achieve the highest protein yield and productivity. Additionally, improving the compatibility between tailored processes and cost-effective industrial strains can lead to the production of protein substitutes that are not only highly nutritious but also economically viable. Hence, the application of SCP derived from SBB presents a dual solution by reducing the need for managing agricultural residues and providing a sustainable source of protein. However, the production of SCP from SBB also has some limitations, such as protein-synthesis efficiency, production cost, and difficulty to scale-up the production process. In the future, there is great potential for significant advancements in the targeted conversion of SBB into protein by customizing high-performance microbial strains. Several sensor and machine learning technologies will predict and monitor real-time dynamic changes in the fermentation process of SBB, offering an opportunity to improve the production of sustainable SCP in an environmentally friendly and precise manner.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.