Redirecting configuration of atomically dispersed selenium catalytic sites for efficient hydrazine oxidation

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-02-07 DOI:10.1016/j.matt.2023.12.001
Kanglei Pang , Yaxin Tang , Chunyu Qiu , Miao Zhang , Akhil Tayal , Shihui Feng , Chang Long , Yonglei Wang , Jian Chang , Bo Pang , Anirban Sikdar , Sadaf Saeedi Garakani , Yu Zhang , Hong Wang , Weiyi Zhang , Guangfu Luo , Yucheng Wang , Jiayin Yuan
{"title":"Redirecting configuration of atomically dispersed selenium catalytic sites for efficient hydrazine oxidation","authors":"Kanglei Pang ,&nbsp;Yaxin Tang ,&nbsp;Chunyu Qiu ,&nbsp;Miao Zhang ,&nbsp;Akhil Tayal ,&nbsp;Shihui Feng ,&nbsp;Chang Long ,&nbsp;Yonglei Wang ,&nbsp;Jian Chang ,&nbsp;Bo Pang ,&nbsp;Anirban Sikdar ,&nbsp;Sadaf Saeedi Garakani ,&nbsp;Yu Zhang ,&nbsp;Hong Wang ,&nbsp;Weiyi Zhang ,&nbsp;Guangfu Luo ,&nbsp;Yucheng Wang ,&nbsp;Jiayin Yuan","doi":"10.1016/j.matt.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the reconstruction of surface sites is crucial for gaining insights into the true active sites and catalytic mechanisms. While extensive research has been conducted on reconstruction behaviors of atomically dispersed metallic catalytic sites, limited attention has been paid to non-metallic ones despite their potential catalytic activity comparable or even superior to their noble-metal counterpart. Herein, we report a carbonaceous, atomically dispersed non-metallic selenium catalyst that displayed exceptional catalytic activity in the hydrazine oxidation reaction (HzOR) in alkaline media, outperforming the noble-metal Pt catalysts. <em>In situ</em> X-ray absorption spectroscopy (XAS) and Fourier transform infrared spectroscopy revealed that the pristine SeC<sub>4</sub> site pre-adsorbs an ∗OH ligand, followed by HzOR occurring on the other side of the OH–SeC<sub>4</sub>. Theoretical calculations proposed that the pre-adsorbed ∗OH group pulls electrons from the Se site, resulting in a more positively charged Se and a higher polarity of Se–C bonds, thereby enhancing surface reactivity toward HzO/R.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 2","pages":"Pages 655-667"},"PeriodicalIF":17.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590238523006148/pdfft?md5=e65ed28faa776465379de8995487d58f&pid=1-s2.0-S2590238523006148-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523006148","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the reconstruction of surface sites is crucial for gaining insights into the true active sites and catalytic mechanisms. While extensive research has been conducted on reconstruction behaviors of atomically dispersed metallic catalytic sites, limited attention has been paid to non-metallic ones despite their potential catalytic activity comparable or even superior to their noble-metal counterpart. Herein, we report a carbonaceous, atomically dispersed non-metallic selenium catalyst that displayed exceptional catalytic activity in the hydrazine oxidation reaction (HzOR) in alkaline media, outperforming the noble-metal Pt catalysts. In situ X-ray absorption spectroscopy (XAS) and Fourier transform infrared spectroscopy revealed that the pristine SeC4 site pre-adsorbs an ∗OH ligand, followed by HzOR occurring on the other side of the OH–SeC4. Theoretical calculations proposed that the pre-adsorbed ∗OH group pulls electrons from the Se site, resulting in a more positively charged Se and a higher polarity of Se–C bonds, thereby enhancing surface reactivity toward HzO/R.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整原子分散硒催化位点的构型以实现高效肼氧化
了解表面位点的重构对于深入了解真正的活性位点和催化机理至关重要。尽管人们对原子分散金属催化位点的重构行为进行了广泛的研究,但对非金属位点的关注却很有限,尽管它们的潜在催化活性可与贵金属位点相媲美,甚至更胜一筹。在此,我们报告了一种碳质原子分散非金属硒催化剂,该催化剂在碱性介质中的肼氧化反应(HzOR)中显示出卓越的催化活性,其性能优于贵金属铂催化剂。原位 X 射线吸收光谱(XAS)和傅立叶变换红外光谱显示,原始 SeC4 位点预先吸附了 ∗OH 配体,随后 HzOR 在 OH-SeC4 的另一侧发生。理论计算表明,预吸附的∗OH基团会从Se位点拉走电子,使Se带更多正电荷,Se-C键的极性更高,从而增强了表面对HzO/R的反应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Increased resistance to photooxidation in Dion-Jacobson lead halide perovskites: Implication for perovskite device stability Factors affecting capacity and voltage fading in disordered rocksalt cathodes for lithium-ion batteries In situ electrochemical deposition of compact metal-organic framework thin films for high-resolution X-ray imaging Strain-gradient-induced modulation of photovoltaic efficiency π-d conjugated coordination mediated catalysis for four-electron-transfer fast-charging aqueous zinc-iodine batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1