Hongke Cai, Yaqin Mao, Xuanhao Zhu, Yunfei Fu, Renjun Zhou
{"title":"Comparison of the Minimum Bounding Rectangle and Minimum Circumscribed Ellipse of Rain Cells from TRMM","authors":"Hongke Cai, Yaqin Mao, Xuanhao Zhu, Yunfei Fu, Renjun Zhou","doi":"10.1007/s00376-023-2281-9","DOIUrl":null,"url":null,"abstract":"<p>Based on the TRMM dataset, this paper compares the applicability of the improved MCE (minimum circumscribed ellipse), MBR (minimum bounding rectangle), and DIA (direct indexing area) methods for rain cell fitting. These three methods can reflect the geometric characteristics of clouds and apply geometric parameters to estimate the real dimensions of rain cells. The MCE method shows a major advantage in identifying the circumference of rain cells. The circumference of rain cells identified by MCE in most samples is smaller than that identified by DIA and MBR, and more similar to the observed rain cells. The area of rain cells identified by MBR is relatively robust. For rain cells composed of many pixels (N > 20), the overall performance is better than that of MCE, but the contribution of MBR to the best identification results, which have the shortest circumference and the smallest area, is less than that of MCE. The DIA method is best suited to small rain cells with a circumference of less than 100 km and an area of less than 120 km<sup>2</sup>, but the overall performance is mediocre. The MCE method tends to achieve the highest success at any angle, whereas there are fewer “best identification” results from DIA or MBR and more of the worst ones in the along-track direction and cross-track direction. Through this comprehensive comparison, we conclude that MCE can obtain the best fitting results with the shortest circumference and the smallest area on behalf of the high filling effect for all sizes of rain cells.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"208 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-023-2281-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the TRMM dataset, this paper compares the applicability of the improved MCE (minimum circumscribed ellipse), MBR (minimum bounding rectangle), and DIA (direct indexing area) methods for rain cell fitting. These three methods can reflect the geometric characteristics of clouds and apply geometric parameters to estimate the real dimensions of rain cells. The MCE method shows a major advantage in identifying the circumference of rain cells. The circumference of rain cells identified by MCE in most samples is smaller than that identified by DIA and MBR, and more similar to the observed rain cells. The area of rain cells identified by MBR is relatively robust. For rain cells composed of many pixels (N > 20), the overall performance is better than that of MCE, but the contribution of MBR to the best identification results, which have the shortest circumference and the smallest area, is less than that of MCE. The DIA method is best suited to small rain cells with a circumference of less than 100 km and an area of less than 120 km2, but the overall performance is mediocre. The MCE method tends to achieve the highest success at any angle, whereas there are fewer “best identification” results from DIA or MBR and more of the worst ones in the along-track direction and cross-track direction. Through this comprehensive comparison, we conclude that MCE can obtain the best fitting results with the shortest circumference and the smallest area on behalf of the high filling effect for all sizes of rain cells.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.