{"title":"High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network","authors":"Youzhi Shi, Zuhai Ma, Hongyu Chen, Yougang Ke, Yu Chen, Xinxing Zhou","doi":"10.1007/s11467-023-1373-4","DOIUrl":null,"url":null,"abstract":"<div><p>Vortex beam with fractional orbital angular momentum (FOAM) is the excellent candidate for improving the capacity of free-space optical (FSO) communication system due to its infinite modes. Therefore, the recognition of FOAM modes with higher resolution is always of great concern. In this work, through an improved EfficientNetV2 based convolutional neural network (CNN), we experimentally achieve the implementation of the recognition of FOAM modes with a resolution as high as 0.001. To the best of our knowledge, it is the first time this high resolution has been achieved. Under the strong atmospheric turbulence (AT) <span>\\((C_n^2 = {10^{ - 15}}\\,{{\\rm{m}}^{ - 2/3}})\\)</span>, the recognition accuracy of FOAM modes at 0.1 and 0.01 resolution with our model is up to 99.12% and 92.24% for a long transmission distance of 2000 m. Even for the resolution at 0.001, the recognition accuracy can still remain at 78.77%. This work provides an effective method for the recognition of FOAM modes, which may largely improve the channel capacity of the free-space optical communication.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1373-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Vortex beam with fractional orbital angular momentum (FOAM) is the excellent candidate for improving the capacity of free-space optical (FSO) communication system due to its infinite modes. Therefore, the recognition of FOAM modes with higher resolution is always of great concern. In this work, through an improved EfficientNetV2 based convolutional neural network (CNN), we experimentally achieve the implementation of the recognition of FOAM modes with a resolution as high as 0.001. To the best of our knowledge, it is the first time this high resolution has been achieved. Under the strong atmospheric turbulence (AT) \((C_n^2 = {10^{ - 15}}\,{{\rm{m}}^{ - 2/3}})\), the recognition accuracy of FOAM modes at 0.1 and 0.01 resolution with our model is up to 99.12% and 92.24% for a long transmission distance of 2000 m. Even for the resolution at 0.001, the recognition accuracy can still remain at 78.77%. This work provides an effective method for the recognition of FOAM modes, which may largely improve the channel capacity of the free-space optical communication.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.