Simplified Information Geometry Approach for Massive MIMO-OFDM Channel Estimation -- Part I: Algorithm and Fixed Point Analysis

Jiyuan Yang, Yan Chen, An-An Lu, Wen Zhong, Xiqi Gao, Xiaohu You, Xiang-Gen Xia, Dirk Slock
{"title":"Simplified Information Geometry Approach for Massive MIMO-OFDM Channel Estimation -- Part I: Algorithm and Fixed Point Analysis","authors":"Jiyuan Yang, Yan Chen, An-An Lu, Wen Zhong, Xiqi Gao, Xiaohu You, Xiang-Gen Xia, Dirk Slock","doi":"arxiv-2401.02035","DOIUrl":null,"url":null,"abstract":"In this two-part paper, we investigate the channel estimation for massive\nmultiple-input multiple-output orthogonal frequency division multiplexing\n(MIMO-OFDM) systems. In Part I, we revisit the information geometry approach\n(IGA) for massive MIMO-OFDM channel estimation. By using the constant magnitude\nproperty of the entries of the measurement matrix in the massive MIMO-OFDM\nchannel estimation and the asymptotic analysis, we find that the second-order\nnatural parameters of the distributions on all the auxiliary manifolds are\nequivalent to each other at each iteration of IGA, and the first-order natural\nparameters of the distributions on all the auxiliary manifolds are\nasymptotically equivalent to each other at the fixed point of IGA. Motivated by\nthese results, we simplify the iterative process of IGA and propose a\nsimplified IGA for massive MIMO-OFDM channel estimation. It is proved that at\nthe fixed point, the a posteriori mean obtained by the simplified IGA is\nasymptotically optimal. The simplified IGA allows efficient implementation with\nfast Fourier transformation (FFT). Simulations confirm that the simplified IGA\ncan achieve near the optimal performance with low complexity in a limited\nnumber of iterations.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.02035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this two-part paper, we investigate the channel estimation for massive multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. In Part I, we revisit the information geometry approach (IGA) for massive MIMO-OFDM channel estimation. By using the constant magnitude property of the entries of the measurement matrix in the massive MIMO-OFDM channel estimation and the asymptotic analysis, we find that the second-order natural parameters of the distributions on all the auxiliary manifolds are equivalent to each other at each iteration of IGA, and the first-order natural parameters of the distributions on all the auxiliary manifolds are asymptotically equivalent to each other at the fixed point of IGA. Motivated by these results, we simplify the iterative process of IGA and propose a simplified IGA for massive MIMO-OFDM channel estimation. It is proved that at the fixed point, the a posteriori mean obtained by the simplified IGA is asymptotically optimal. The simplified IGA allows efficient implementation with fast Fourier transformation (FFT). Simulations confirm that the simplified IGA can achieve near the optimal performance with low complexity in a limited number of iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模 MIMO-OFDM 信道估计的简化信息几何方法 -- 第一部分:算法和定点分析
本文由两部分组成,研究大规模多输入多输出正交频分复用(MIMO-OFDM)系统的信道估计。在第一部分中,我们重温了用于大规模 MIMO-OFDM 信道估计的信息几何方法(IGA)。通过利用大规模 MIMO-OFDM 信道估计中测量矩阵项的恒定幅度特性和渐近分析,我们发现在 IGA 的每次迭代中,所有辅助流形上分布的二阶自然参数彼此相等,而在 IGA 的定点处,所有辅助流形上分布的一阶自然参数彼此渐近相等。受这些结果的启发,我们简化了 IGA 的迭代过程,并提出了用于大规模 MIMO-OFDM 信道估计的简化 IGA。实验证明,在定点处,简化 IGA 所获得的后验均值是渐近最优的。简化 IGA 允许使用快速傅立叶变换 (FFT) 高效实现。仿真证实,简化 IGA 可以在有限的迭代次数中以较低的复杂度达到接近最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1