Uncovering the synergy between gold and sodium on ZrO2 for boosting the reverse water gas shift reaction: In-situ spectroscopic investigations

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Applied Catalysis B: Environmental Pub Date : 2024-01-03 DOI:10.1016/j.apcatb.2023.123685
Abdallah I.M. Rabee , Sebastian Cisneros , Dan Zhao , Carsten R. Kreyenschulte , Stephan Bartling , Vita Kondratenko , Christoph Kubis , Evgenii V. Kondratenko , Angelika Brückner , Jabor Rabeah
{"title":"Uncovering the synergy between gold and sodium on ZrO2 for boosting the reverse water gas shift reaction: In-situ spectroscopic investigations","authors":"Abdallah I.M. Rabee ,&nbsp;Sebastian Cisneros ,&nbsp;Dan Zhao ,&nbsp;Carsten R. Kreyenschulte ,&nbsp;Stephan Bartling ,&nbsp;Vita Kondratenko ,&nbsp;Christoph Kubis ,&nbsp;Evgenii V. Kondratenko ,&nbsp;Angelika Brückner ,&nbsp;Jabor Rabeah","doi":"10.1016/j.apcatb.2023.123685","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> conversion to CO <em>via</em> the reverse water-gas shift (RWGS) reaction is a promising source of syngas for subsequent synthesis of liquid fuels and chemicals. Herein, we present the synthesis of catalysts containing Au supported on hydroxylated Na-modified ZrO<sub>2</sub>, with Au amounts ranging from 0.05 to 1 wt%. Systematic investigations reveal the formation of cooperative Au/Na sites at the interface. These sites cooperate synergistically to activate CO<sub>2</sub> and generate a high surface density of carboxylate-like species, which serve as highly active intermediates for CO formation. It was found that the RWGS reaction on the catalyst with low Au loading proceeds mainly <em>via</em><span> a carboxylate pathway, with bidentate formate acting as spectators. At higher Au loading, the bidentate formate pathway contributes somewhat to CO formation alongside the carboxylate pathway. Based on temporal analysis of products, we emphasize the significant roles of H</span><sub>2</sub> spillover and the metal-support interface in the RWGS reaction.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323013280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 conversion to CO via the reverse water-gas shift (RWGS) reaction is a promising source of syngas for subsequent synthesis of liquid fuels and chemicals. Herein, we present the synthesis of catalysts containing Au supported on hydroxylated Na-modified ZrO2, with Au amounts ranging from 0.05 to 1 wt%. Systematic investigations reveal the formation of cooperative Au/Na sites at the interface. These sites cooperate synergistically to activate CO2 and generate a high surface density of carboxylate-like species, which serve as highly active intermediates for CO formation. It was found that the RWGS reaction on the catalyst with low Au loading proceeds mainly via a carboxylate pathway, with bidentate formate acting as spectators. At higher Au loading, the bidentate formate pathway contributes somewhat to CO formation alongside the carboxylate pathway. Based on temporal analysis of products, we emphasize the significant roles of H2 spillover and the metal-support interface in the RWGS reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示 ZrO2 上金和钠在促进反向水气变换反应中的协同作用:原位光谱研究
通过反向水气变换(RWGS)反应将二氧化碳转化为一氧化碳是一种很有前景的合成气来源,可用于后续液体燃料和化学品的合成。在此,我们介绍了在羟化 Na 改性 ZrO2 上支撑的含金催化剂的合成,金的含量从 0.05 到 1 wt.%。系统研究表明,在界面上形成了金/纳协同位点。这些位点协同激活了二氧化碳,并产生了高密度的羧酸盐类物质,成为二氧化碳形成的高活性中间体。研究发现,在金负载量较低的催化剂上,RWGS 反应主要通过羧酸盐途径进行,而双叉甲酸盐则充当旁观者。金负载量较高时,双叉甲酸酯途径与羧酸酯途径一起在一定程度上促进了 CO 的形成。根据对产物的时间分析,我们强调了 H2 溢出和金属-支撑界面在 RWGS 反应中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
期刊最新文献
Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1