Antiproliferative polyketides from fungus Xylaria cf. Longipes SWUF08-81 in different culture media.

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL Natural Products and Bioprospecting Pub Date : 2024-01-06 DOI:10.1007/s13659-023-00427-7
Kittiwan Sresuksai, Sasiphimol Sawadsitang, Phongphan Jantaharn, Pakin Noppawan, Audomsak Churat, Nuttika Suwannasai, Wiyada Mongkolthanaruk, Thanaset Senawong, Sarawut Tontapha, Pairot Moontragoon, Vittaya Amornkitbamrung, Sirirath McCloskey
{"title":"Antiproliferative polyketides from fungus Xylaria cf. Longipes SWUF08-81 in different culture media.","authors":"Kittiwan Sresuksai, Sasiphimol Sawadsitang, Phongphan Jantaharn, Pakin Noppawan, Audomsak Churat, Nuttika Suwannasai, Wiyada Mongkolthanaruk, Thanaset Senawong, Sarawut Tontapha, Pairot Moontragoon, Vittaya Amornkitbamrung, Sirirath McCloskey","doi":"10.1007/s13659-023-00427-7","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive compounds from the wood-decay fungus Xylaria cf. longipes SWUF08-81, cultivated in three different culture media (GM, YM and PDB), were isolated. Their structures and stereochemistry were deduced from spectroscopic and MS data analysis, together with quantum chemical calculations of <sup>13</sup>C NMR chemical shifts and electronic circular dichroism (ECD) spectra. Five undescribed polyketides including dibenzofuran (1), mellein (2), dihydroisocoumarin (15), and two pyrans (16, 17), together with twenty-three compounds were determined. Compounds 18 and 20 were significantly toxic against cancer cell lines (HCT116, HT29, MCF-7 and HeLa) based on the MTT assay. Quantification by HPLC showed that 18 was produced three-fold higher in the broth of PDB than YM. These studies showed that the production of different compounds were primarily dependent on nutrition sources and it has given a starting point for the growth optimization conditions for the scaling up of bioactive compounds production.</p>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":"6"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s13659-023-00427-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive compounds from the wood-decay fungus Xylaria cf. longipes SWUF08-81, cultivated in three different culture media (GM, YM and PDB), were isolated. Their structures and stereochemistry were deduced from spectroscopic and MS data analysis, together with quantum chemical calculations of 13C NMR chemical shifts and electronic circular dichroism (ECD) spectra. Five undescribed polyketides including dibenzofuran (1), mellein (2), dihydroisocoumarin (15), and two pyrans (16, 17), together with twenty-three compounds were determined. Compounds 18 and 20 were significantly toxic against cancer cell lines (HCT116, HT29, MCF-7 and HeLa) based on the MTT assay. Quantification by HPLC showed that 18 was produced three-fold higher in the broth of PDB than YM. These studies showed that the production of different compounds were primarily dependent on nutrition sources and it has given a starting point for the growth optimization conditions for the scaling up of bioactive compounds production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不同培养基中从真菌 Xylaria cf. Longipes SWUF08-81 中提取的抗增殖多酮。
从在三种不同培养基(GM、YM 和 PDB)中培养的木材腐朽真菌 Xylaria cf. longipes SWUF08-81 中分离出了生物活性化合物。通过光谱和质谱数据分析,以及 13C NMR 化学位移和电子圆二色性(ECD)光谱的量子化学计算,推断出了它们的结构和立体化学性质。测定了五种未曾描述过的多酮类化合物,包括二苯并呋喃(1)、三叶草苷(2)、二氢异香豆素(15)和两种吡喃(16、17),以及 23 种化合物。根据 MTT 试验,化合物 18 和 20 对癌细胞株(HCT116、HT29、MCF-7 和 HeLa)具有明显的毒性。高效液相色谱定量显示,18 在 PDB 肉汤中的产生量是 YM 的三倍。这些研究表明,不同化合物的生产主要取决于营养来源,这为扩大生物活性化合物生产的生长优化条件提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
期刊最新文献
Newly isolated terpenoids (covering 2019–2024) from Aspergillus species and their potential for the discovery of novel antimicrobials Asprecosides A–J, ten new pentacyclic triterpenoid glycosides with cytotoxic activity from the roots of Ilex asprella Emestrin-type epipolythiodioxopiperazines from Aspergillus nidulans with cytotoxic activities by regulating PI3K/AKT and mitochondrial apoptotic pathways Advanced RPL19-TRAPKI-seq method reveals mechanism of action of bioactive compounds Structure–function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1