{"title":"Decoding the features and potential roles of respiratory burst oxidase homologs in bread wheat","authors":"Yashraaj Sharma , Ishu , Shumayla , Sameer Dixit , Kashmir Singh , Santosh Kumar Upadhyay","doi":"10.1016/j.cpb.2023.100315","DOIUrl":null,"url":null,"abstract":"<div><p>Respiratory burst oxidase homolog (RBOH) proteins in plants generate reactive oxygen species (ROS) in the apoplast to regulate developmental processes and stress responses. Herein, a total of 40 <em>TaRBOH</em> genes are identified in the genome of <em>Triticum aestivum</em> by a genome-wide search using the latest database. Phylogenetic analysis separated the RBOH proteins into five clusters and close clustering suggested an evolutionary relationship among them. The presence of duplication events (DEs) and the nature of selection (purifying) during evolutionary analysis revealed their role in the expansion of the <em>TaRBOH</em> gene family. The interaction analyses revealed their extended roles and coordinated functioning with various stress-related signaling pathways, including ABA- and Ca<sup>2+</sup>-signaling. Expression profiling in different tissue developmental stages and under stress conditions disclosed their involvement in growth, development and stress responses. In addition, the presence of assorted groups of <em>cis-</em>regulatory elements, interaction with the diverse nature of transcription factors and miRNA related to plant development, hormones and various stresses further suggested their association with developmental and stress-responsive pathways. This study provides inclusive information related to the functioning of <em>TaRBOH</em> genes in bread wheat and would provide a valuable reference for their functional characterization for crop improvement.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"37 ","pages":"Article 100315"},"PeriodicalIF":5.4000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662823000440/pdfft?md5=5294341a03bddea340eb7d112b25a0b3&pid=1-s2.0-S2214662823000440-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662823000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Respiratory burst oxidase homolog (RBOH) proteins in plants generate reactive oxygen species (ROS) in the apoplast to regulate developmental processes and stress responses. Herein, a total of 40 TaRBOH genes are identified in the genome of Triticum aestivum by a genome-wide search using the latest database. Phylogenetic analysis separated the RBOH proteins into five clusters and close clustering suggested an evolutionary relationship among them. The presence of duplication events (DEs) and the nature of selection (purifying) during evolutionary analysis revealed their role in the expansion of the TaRBOH gene family. The interaction analyses revealed their extended roles and coordinated functioning with various stress-related signaling pathways, including ABA- and Ca2+-signaling. Expression profiling in different tissue developmental stages and under stress conditions disclosed their involvement in growth, development and stress responses. In addition, the presence of assorted groups of cis-regulatory elements, interaction with the diverse nature of transcription factors and miRNA related to plant development, hormones and various stresses further suggested their association with developmental and stress-responsive pathways. This study provides inclusive information related to the functioning of TaRBOH genes in bread wheat and would provide a valuable reference for their functional characterization for crop improvement.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.