An investigation of machine learning algorithms and data augmentation techniques for diabetes diagnosis using class imbalanced BRFSS dataset

Mohammad Mihrab Chowdhury , Ragib Shahariar Ayon , Md Sakhawat Hossain
{"title":"An investigation of machine learning algorithms and data augmentation techniques for diabetes diagnosis using class imbalanced BRFSS dataset","authors":"Mohammad Mihrab Chowdhury ,&nbsp;Ragib Shahariar Ayon ,&nbsp;Md Sakhawat Hossain","doi":"10.1016/j.health.2023.100297","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes is a prevalent chronic condition that poses significant challenges to early diagnosis and identifying at-risk individuals. Machine learning plays a crucial role in diabetes detection by leveraging its ability to process large volumes of data and identify complex patterns. However, imbalanced data, where the number of diabetic cases is substantially smaller than non-diabetic cases, complicates the identification of individuals with diabetes using machine learning algorithms. This study focuses on predicting whether a person is at risk of diabetes, considering the individual’s health and socio-economic conditions while mitigating the challenges posed by imbalanced data. We employ several data augmentation techniques, such as oversampling (Synthetic Minority Over Sampling for Nominal Data, i.e.SMOTE-N), undersampling (Edited Nearest Neighbor, i.e. ENN), and hybrid sampling techniques (SMOTE-Tomek and SMOTE-ENN) on training data before applying machine learning algorithms to minimize the impact of imbalanced data. Our study sheds light on the significance of carefully utilizing data augmentation techniques without any data leakage to enhance the effectiveness of machine learning algorithms. Moreover, it offers a complete machine learning structure for healthcare practitioners, from data obtaining to machine learning prediction, enabling them to make informed decisions.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100297"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001648/pdfft?md5=cbb15d1b9b72127ef6f0b213ad40bae0&pid=1-s2.0-S2772442523001648-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a prevalent chronic condition that poses significant challenges to early diagnosis and identifying at-risk individuals. Machine learning plays a crucial role in diabetes detection by leveraging its ability to process large volumes of data and identify complex patterns. However, imbalanced data, where the number of diabetic cases is substantially smaller than non-diabetic cases, complicates the identification of individuals with diabetes using machine learning algorithms. This study focuses on predicting whether a person is at risk of diabetes, considering the individual’s health and socio-economic conditions while mitigating the challenges posed by imbalanced data. We employ several data augmentation techniques, such as oversampling (Synthetic Minority Over Sampling for Nominal Data, i.e.SMOTE-N), undersampling (Edited Nearest Neighbor, i.e. ENN), and hybrid sampling techniques (SMOTE-Tomek and SMOTE-ENN) on training data before applying machine learning algorithms to minimize the impact of imbalanced data. Our study sheds light on the significance of carefully utilizing data augmentation techniques without any data leakage to enhance the effectiveness of machine learning algorithms. Moreover, it offers a complete machine learning structure for healthcare practitioners, from data obtaining to machine learning prediction, enabling them to make informed decisions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用类不平衡 BRFSS 数据集研究用于糖尿病诊断的机器学习算法和数据增强技术
糖尿病是一种普遍存在的慢性疾病,给早期诊断和识别高危人群带来了巨大挑战。机器学习利用其处理大量数据和识别复杂模式的能力,在糖尿病检测中发挥着至关重要的作用。然而,不平衡数据(即糖尿病病例数量远远少于非糖尿病病例)使得使用机器学习算法识别糖尿病患者变得复杂。本研究的重点是预测一个人是否有患糖尿病的风险,同时考虑到个人的健康状况和社会经济条件,并减轻不平衡数据带来的挑战。在应用机器学习算法之前,我们在训练数据上采用了几种数据增强技术,如超采样(名义数据合成少数群体超采样,即 SMOTE-N)、欠采样(编辑最近邻,即 ENN)和混合采样技术(SMOTE-Tomek 和 SMOTE-ENN),以最大限度地减少不平衡数据的影响。我们的研究揭示了在不泄露任何数据的情况下谨慎利用数据增强技术对提高机器学习算法有效性的重要意义。此外,它还为医疗从业人员提供了从数据获取到机器学习预测的完整机器学习结构,使他们能够做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1