Dementia is a major global health issue that significantly impacts millions of individuals, families, and societies worldwide, creating a substantial burden on healthcare systems. This study introduces a novel approach for predicting dementia by employing the Logistic Regression (LR) model, enhanced with Recursive Feature Elimination (RFE), applied to a unique dataset comprising 1000 patients, with 49.60% male and 50.40% female. The LR model, recognized for its simplicity and effectiveness in binary classification tasks, is optimized through RFE, a technique that iteratively eliminates less significant features to improve model performance. The model’s effectiveness was assessed using comprehensive metrics, including accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), and Kappa score. Furthermore, SHapley Additive exPlanations (SHAP) values were employed to increase the interpretability of the model, providing insights into the most influential features for dementia prediction. To address the issue of overfitting, a standardization technique was implemented, which enhanced the model’s predictive performance. The findings of this study hold potential implications for early dementia detection, informing intervention strategies, and optimizing healthcare resource allocation.
Barrett's esophagus is an asymptomatic precursor to esophageal adenocarcinoma. Its rising incidence due to lifestyle factors, coupled with healthcare costs, requires cost-effective alternatives for surveillance. We propose a decision-analytic Markov cohort model to simulate Barrett's esophagus's natural progression to esophageal adenocarcinoma using TreeAge Pro. Health states include metaplasia (non-dysplastic Barrett's esophagus), low-grade dysplasia, high-grade dysplasia, and esophageal adenocarcinoma. Triplicates of these health states represent one non-stratified and two risk-stratified cohorts for devising risk-based strategies. A cycle length of six months and a time horizon of 35 years, totaling 70 cycles, is considered. Model inputs are derived from literature and, when unavailable from an extensive local database of 1087 patients (5081 person-years) from March 2003–2021, cleaned and analyzed with Rstudio (R version 3.6.3). Specific tests included descriptive statistics, Cox-proportional hazard models, and graphing. A seven-step calibration process is performed for risk-stratified and non-stratified groups simultaneously to match the progression to high-grade dysplasia and esophageal adenocarcinoma. This allows comparison between risk- and non-risk-based strategies. The calibration process included input parameterization, optimization, goodness of fit calculation, selection of sets meeting convergence criteria, and integration into probabilistic sensitivity analysis. This process generated 10,187 sets of transition probabilities, with 4358 meeting convergence criteria, ensuring equal model outputs in all groups. Mortality was 10.7% for cancer-related deaths, matching literature values. This process provides a robust framework for evaluating Barrett's esophagus progression and management strategies, supporting informed decision-making in healthcare.