Cobalt–organic framework as a Bi–functional electrocatalyst for renewable hydrogen production by electrochemical water splitting

Eshagh Irandoost , Neda Sadat Barekati , Hossein Farsi , Alireza Farrokhi , Garren Horvath , Zhihai Li
{"title":"Cobalt–organic framework as a Bi–functional electrocatalyst for renewable hydrogen production by electrochemical water splitting","authors":"Eshagh Irandoost ,&nbsp;Neda Sadat Barekati ,&nbsp;Hossein Farsi ,&nbsp;Alireza Farrokhi ,&nbsp;Garren Horvath ,&nbsp;Zhihai Li","doi":"10.1016/j.jaecs.2023.100240","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable hydrogen production by electrocatalytic water splitting is an attractive approach to establish a carbon–free future. On the other hand, the operationalization of this technology on a large scale requires the design and synthesis of efficient electrocatalysts to promote hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Metal–organic frameworks (MOFs) have provided new opportunities in the field of electrocatalytic water splitting due to their unique properties. Herein, we report an affordable, simple, and environmentally friendly strategy for the synthesis of Co<sub>3</sub>(BTC)<sub>2</sub> MOF electrocatalyst in distilled water at room temperature. Surprisingly, Co<sub>3</sub>(BTC)<sub>2</sub> demonstrated superior electrocatalytic activity toward HER and OER in alkaline media. The Co<sub>3</sub>(BTC)<sub>2</sub> requires overpotentials of 450 and 370mV for HER and OER to achieve a current density of 10mA cm<sup>−2</sup>, respectively.</p></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"17 ","pages":"Article 100240"},"PeriodicalIF":5.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666352X23001292/pdfft?md5=a887a03b173639043e0dad73d04cb5ec&pid=1-s2.0-S2666352X23001292-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X23001292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable hydrogen production by electrocatalytic water splitting is an attractive approach to establish a carbon–free future. On the other hand, the operationalization of this technology on a large scale requires the design and synthesis of efficient electrocatalysts to promote hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Metal–organic frameworks (MOFs) have provided new opportunities in the field of electrocatalytic water splitting due to their unique properties. Herein, we report an affordable, simple, and environmentally friendly strategy for the synthesis of Co3(BTC)2 MOF electrocatalyst in distilled water at room temperature. Surprisingly, Co3(BTC)2 demonstrated superior electrocatalytic activity toward HER and OER in alkaline media. The Co3(BTC)2 requires overpotentials of 450 and 370mV for HER and OER to achieve a current density of 10mA cm−2, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钴-有机框架作为一种双功能电催化剂,通过电化学水分离实现可再生制氢
通过电催化水分离技术实现可持续制氢是实现无碳未来的一种极具吸引力的方法。另一方面,这项技术的大规模应用需要设计和合成高效的电催化剂,以促进氢进化反应(HER)和氧进化反应(OER)。金属有机框架(MOFs)因其独特的性质,为电催化水分离领域提供了新的机遇。在此,我们报告了一种在室温蒸馏水中合成 Co3(BTC)2 MOF 电催化剂的经济、简单且环保的策略。令人惊讶的是,Co3(BTC)2 在碱性介质中对 HER 和 OER 表现出了卓越的电催化活性。对于 HER 和 OER,Co3(BTC)2 分别需要 450 和 370mV 的过电位才能达到 10mA cm-2 的电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Machine learning enhanced time-resolved multi-particle tracking velocimetry in solid fuel particle group combustion Accelerating mixing controlled turbulent combustion simulations with hybrid Navier–Stokes/ANN scalar-solvers Role of pocket formation in the extinction of methane flames subject to strong turbulence Research progress on thermochemical conversion technologies for hydrogen production from waste plastics So, you want to measure flare emissions? Challenges and opportunities for quantifying utility pipe flare performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1