Yashwanth Arcot , Minchen Mu , Yu-Ting Lin , William DeFlorio , Haris Jebrini , Angela Parry-Hanson Kunadu , Yagmur Yegin , Younjin Min , Alejandro Castillo , Luis Cisneros-Zevallos , Thomas M. Taylor , Mustafa E.S. Akbulut
{"title":"Edible nano-encapsulated cinnamon essential oil hybrid wax coatings for enhancing apple safety against food borne pathogens","authors":"Yashwanth Arcot , Minchen Mu , Yu-Ting Lin , William DeFlorio , Haris Jebrini , Angela Parry-Hanson Kunadu , Yagmur Yegin , Younjin Min , Alejandro Castillo , Luis Cisneros-Zevallos , Thomas M. Taylor , Mustafa E.S. Akbulut","doi":"10.1016/j.crfs.2023.100667","DOIUrl":null,"url":null,"abstract":"<div><p>Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"8 ","pages":"Article 100667"},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927123002356/pdfft?md5=7e44ed03ea5141c055330f77476a6547&pid=1-s2.0-S2665927123002356-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927123002356","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Post-harvest losses of fruits due to decay and concerns regarding microbial food safety are significant within the produce processing industry. Additionally, maintaining the quality of exported commodities to distant countries continues to pose a challenge. To address these issues, the application of bioactive compounds, such as essential oils, has gained recognition as a means to extend shelf life by acting as antimicrobials. Herein, we have undertaken an innovative approach by nano-encapsulating cinnamon-bark essential oil using whey protein concentrate and imbibing nano-encapsulates into food-grade wax commonly applied on produce surfaces. We have comprehensively examined the physical, chemical, and antimicrobial properties of this hybrid wax to evaluate its efficacy in combatting the various foodborne pathogens that frequently trouble producers and handlers in the post-harvest processing industry. The coatings as applied demonstrated a static contact angle of 85 ± 1.6°, and advancing and receding contact angles of 90 ± 1.1° and 53.0 ± 1.6°, respectively, resembling the wetting properties of natural waxes on apples. Nanoencapsulation significantly delayed the release of essential oil, increasing the half-life by 61 h compared to its unencapsulated counterparts. This delay correlated with statistically significant reductions (p = 0.05) in bacterial populations providing both immediate and delayed (up to 72 h) antibacterial effects as well as expanded fungal growth inhibition zones compared to existing wax technologies, demonstrating promising applicability for high-quality fruit storage and export. The utilization of this advanced produce wax coating technology offers considerable potential for bolstering food safety and providing enhanced protection against bacteria and fungi for produce commodities.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.