Valeria Santillan Morales, Gloria Acacia Benitez King
{"title":"Olfactory neuronal precursors as a model to analyze the effects of melatonin in Alzheimer's disease.","authors":"Valeria Santillan Morales, Gloria Acacia Benitez King","doi":"10.32794/mr112500164","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a multifactorial disorder of great importance affecting millions globally and its prevalence will triple in the following decades. Therefore, analysis and identification of substances which can effectively reduce the pathological process of this disease in different study models are crucial. Melatonin works as a multitasking substance and some of its activities could be used to target the neurodegenerative process of AD. These include, but not limited to, its potent antioxidant activity, regulation of sleep-wake rhythms (important for the consolidation of memory and cognition) and its action as a neurotrophic growth factor that promotes differentiation and neuronal proliferation. To evaluate the effects of melatonin at cellular level in AD, it is essential to have a study model that reflects the pathological process occurring in the CNS. In this, review we summarize the potential use of olfactory neuronal precursors derived from olfactory neuroepithelium directly obtained from patients for such purposes.","PeriodicalId":18604,"journal":{"name":"Melatonin Research","volume":"34 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melatonin Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32794/mr112500164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a multifactorial disorder of great importance affecting millions globally and its prevalence will triple in the following decades. Therefore, analysis and identification of substances which can effectively reduce the pathological process of this disease in different study models are crucial. Melatonin works as a multitasking substance and some of its activities could be used to target the neurodegenerative process of AD. These include, but not limited to, its potent antioxidant activity, regulation of sleep-wake rhythms (important for the consolidation of memory and cognition) and its action as a neurotrophic growth factor that promotes differentiation and neuronal proliferation. To evaluate the effects of melatonin at cellular level in AD, it is essential to have a study model that reflects the pathological process occurring in the CNS. In this, review we summarize the potential use of olfactory neuronal precursors derived from olfactory neuroepithelium directly obtained from patients for such purposes.