{"title":"A Freestanding Multifunctional Interlayer Based on Fe/Zn Single Atoms Implanted on a Carbon Nanofiber Membrane for High-Performance Li-S Batteries","authors":"Mengdi Zhang, Shuoshuo Kong, Bei Chen, Mingbo Wu","doi":"10.3390/batteries10010015","DOIUrl":null,"url":null,"abstract":"By virtue of the high theoretical energy density and low cost, Lithium–sulfur (Li-S) batteries have drawn widespread attention. However, their electrochemical performances are seriously plagued by the shuttling of intermediate polysulfides and the slow reaction kinetics during practical implementation. Herein, we designed a freestanding flexible membrane composed of nitrogen-doped porous carbon nanofibers anchoring iron and zinc single atoms (FeZn-PCNF), to serve as the polysulfide barrier and the reaction promotor. The flexible porous networks formed by the interwoven carbon nanofibers not only offer fast channels for the transport of electrons/ions, but also guarantee the structural stability of the all-in-one multifunctional interlayer during cycling. Highly dispersed Fe and Zn atoms in the carbon scaffold synergistically immobilize sulfur species and expedite their reversible conversion. Therefore, employing FeZn-PCNF as the freestanding interlayer between the cathode and separator, the Li-S battery delivers a superior initial reversible discharge capacity of 1140 mA h g−1 at a current density of 0.5 C and retains a high capacity of 618 mA h g−1 after 600 cycles at a high current density of 1 C.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"125 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10010015","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
By virtue of the high theoretical energy density and low cost, Lithium–sulfur (Li-S) batteries have drawn widespread attention. However, their electrochemical performances are seriously plagued by the shuttling of intermediate polysulfides and the slow reaction kinetics during practical implementation. Herein, we designed a freestanding flexible membrane composed of nitrogen-doped porous carbon nanofibers anchoring iron and zinc single atoms (FeZn-PCNF), to serve as the polysulfide barrier and the reaction promotor. The flexible porous networks formed by the interwoven carbon nanofibers not only offer fast channels for the transport of electrons/ions, but also guarantee the structural stability of the all-in-one multifunctional interlayer during cycling. Highly dispersed Fe and Zn atoms in the carbon scaffold synergistically immobilize sulfur species and expedite their reversible conversion. Therefore, employing FeZn-PCNF as the freestanding interlayer between the cathode and separator, the Li-S battery delivers a superior initial reversible discharge capacity of 1140 mA h g−1 at a current density of 0.5 C and retains a high capacity of 618 mA h g−1 after 600 cycles at a high current density of 1 C.
锂硫(Li-S)电池具有理论能量密度高、成本低的特点,因此受到广泛关注。然而,在实际应用过程中,中间多硫化物的穿梭和缓慢的反应动力学严重影响了其电化学性能。在此,我们设计了一种由锚定了铁和锌单原子的掺氮多孔碳纳米纤维(FeZn-PCNF)组成的独立柔性膜,作为多硫化物的屏障和反应促进剂。交织的碳纳米纤维所形成的柔性多孔网络不仅为电子/离子的传输提供了快速通道,还保证了一体化多功能中间膜在循环过程中的结构稳定性。碳支架中高度分散的铁原子和锌原子可协同固定硫元素,并加速其可逆转化。因此,采用 FeZn-PCNF 作为阴极和隔膜之间的独立中间层,锂-S 电池在 0.5 C 的电流密度下可提供 1140 mA h g-1 的出色初始可逆放电容量,并在 1 C 的高电流密度下循环 600 次后仍能保持 618 mA h g-1 的高容量。