A complete mathematical modelling of robots actuated by epicyclic-gear

Brahim Fernini
{"title":"A complete mathematical modelling of robots actuated by epicyclic-gear","authors":"Brahim Fernini","doi":"10.53294/ijfetr.2023.5.2.0032","DOIUrl":null,"url":null,"abstract":"The industrial robots often use planetary gear system to have high joint torques; therefore, the influence of the rotary inertia of the number of the equally spaced planet-gears on the dynamical behavior of the robot is very important. The main objective of this paper is to develop the dynamic modeling of robot actuated by (n) equally spaced planet-gears in the case where the planet-carrier is fixed, no closed solution has been reported for this dynamic modeling, and to compare between the dynamic behavior of robot actuated by (n+1) and (n) equally spaced planet-gears for a same trajectory planning. The authors derive the explicit dynamic model for an elbow down of 2-R manipulator holding an external mass. Finally, the obtained simulation results of the dynamic modeling are verified by modeling the same robot and using an advanced simulation via SolidWorks.","PeriodicalId":231442,"journal":{"name":"International Journal of Frontiers in Engineering and Technology Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Frontiers in Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53294/ijfetr.2023.5.2.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The industrial robots often use planetary gear system to have high joint torques; therefore, the influence of the rotary inertia of the number of the equally spaced planet-gears on the dynamical behavior of the robot is very important. The main objective of this paper is to develop the dynamic modeling of robot actuated by (n) equally spaced planet-gears in the case where the planet-carrier is fixed, no closed solution has been reported for this dynamic modeling, and to compare between the dynamic behavior of robot actuated by (n+1) and (n) equally spaced planet-gears for a same trajectory planning. The authors derive the explicit dynamic model for an elbow down of 2-R manipulator holding an external mass. Finally, the obtained simulation results of the dynamic modeling are verified by modeling the same robot and using an advanced simulation via SolidWorks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用双环齿轮驱动机器人的完整数学模型
工业机器人通常使用行星齿轮系统来获得高关节扭矩;因此,等间距行星齿轮数量的旋转惯性对机器人动态行为的影响非常重要。本文的主要目的是在行星载体固定的情况下,建立由(n)个等间距行星齿轮驱动的机器人的动态模型,目前还没有关于该动态模型的封闭解的报道,并比较由(n+1)个和(n)个等间距行星齿轮驱动的机器人在相同轨迹规划下的动态行为。作者为手持外部质量的 2-R 机械手的肘部下压推导出了明确的动态模型。最后,通过 SolidWorks 对同一机械手进行建模并使用高级仿真,验证了所获得的动态建模仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical perspectives on predictive analytics in it service management: Enhancing service quality Predictive maintenance in oil and gas facilities, leveraging ai for asset integrity management WR21 marine gas turbine thermodynamic simulator for ship propulsion studies A Proposal for method of cold nuclear fusion, based on new Axioms and Laws Economic and environmental comparison between diesel-electric and mechanical propulsion plants for a small cruise ship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1