{"title":"On the domain of convergence of general Dirichlet series with complex exponents","authors":"M.R. Kuryliak, O. Skaskiv","doi":"10.15330/cmp.15.2.594-607","DOIUrl":null,"url":null,"abstract":"Let $(\\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\\sum\\limits_{n=0}^{+\\infty} a_ne^{z\\lambda_n}$, $z\\in\\mathbb{C}$, we denote $G_{\\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\\mu(z,F)=\\max\\big\\{|a_n|e^{\\Re(z\\lambda_n)} : n\\geq 0\\big\\}$, respectively. It is well known that $G_\\mu(F), G_a(F)$ are convex domains. Let us denote $\\mathcal{N}_1(z):=\\{n : \\Re(z\\lambda_n)>0\\}$, $\\mathcal{N}_2(z):=\\{n : \\Re(z\\lambda_n)<0\\}$ and \\[\\alpha^{(1)}(\\theta) :=\\varliminf\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_1(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)},\\qquad \\alpha^{(2)}(\\theta) :=\\varlimsup\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_2(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)}.\\] Assume that $a_n\\to 0$ as $n\\to +\\infty$. In the article, we prove the following statements. $1)$ If $\\alpha^{(2)}(\\theta)<\\alpha^{(1)}(\\theta)$ for some $\\theta\\in [0,\\pi)$ then \\[\\big\\{te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\big\\}\\subset G_\\mu(F)\\] as well as \\[\\big\\{te^{i\\theta} : t\\in (-\\infty,\\alpha^{(2)}(\\theta))\\cup (\\alpha^{(1)}(\\theta),+\\infty)\\big\\}\\cap G_\\mu(F)=\\emptyset.\\] $2)$ $G_\\mu(F)=\\bigcup\\limits_{\\theta\\in [0,\\pi)}\\{z=te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\}.$ $3)$ If $h:=\\varliminf\\limits_{n\\to +\\infty}\\frac{-\\ln |a_n|}{\\ln n}\\in (1,+\\infty)$, then \\[\\Big(\\frac{h}{h-1}\\cdot G_a(F)\\Big)\\supset G_\\mu(F)\\supset G_c(F).\\] If $h=+\\infty$ then $G_a(F)=G_c(F)=G_\\mu(F)$, therefore $G_c(F)$ is also a convex domain.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.594-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $(\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, we denote $G_{\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} : n\geq 0\big\}$, respectively. It is well known that $G_\mu(F), G_a(F)$ are convex domains. Let us denote $\mathcal{N}_1(z):=\{n : \Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n : \Re(z\lambda_n)<0\}$ and \[\alpha^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\] Assume that $a_n\to 0$ as $n\to +\infty$. In the article, we prove the following statements. $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\}\subset G_\mu(F)\] as well as \[\big\{te^{i\theta} : t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\] $2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=\varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\] If $h=+\infty$ then $G_a(F)=G_c(F)=G_\mu(F)$, therefore $G_c(F)$ is also a convex domain.