On the domain of convergence of general Dirichlet series with complex exponents

IF 1 Q1 MATHEMATICS Carpathian Mathematical Publications Pub Date : 2023-12-30 DOI:10.15330/cmp.15.2.594-607
M.R. Kuryliak, O. Skaskiv
{"title":"On the domain of convergence of general Dirichlet series with complex exponents","authors":"M.R. Kuryliak, O. Skaskiv","doi":"10.15330/cmp.15.2.594-607","DOIUrl":null,"url":null,"abstract":"Let $(\\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\\sum\\limits_{n=0}^{+\\infty} a_ne^{z\\lambda_n}$, $z\\in\\mathbb{C}$, we denote $G_{\\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\\mu(z,F)=\\max\\big\\{|a_n|e^{\\Re(z\\lambda_n)} : n\\geq 0\\big\\}$, respectively. It is well known that $G_\\mu(F), G_a(F)$ are convex domains. Let us denote $\\mathcal{N}_1(z):=\\{n : \\Re(z\\lambda_n)>0\\}$, $\\mathcal{N}_2(z):=\\{n : \\Re(z\\lambda_n)<0\\}$ and \\[\\alpha^{(1)}(\\theta) :=\\varliminf\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_1(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)},\\qquad \\alpha^{(2)}(\\theta) :=\\varlimsup\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_2(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)}.\\] Assume that $a_n\\to 0$ as $n\\to +\\infty$. In the article, we prove the following statements. $1)$ If $\\alpha^{(2)}(\\theta)<\\alpha^{(1)}(\\theta)$ for some $\\theta\\in [0,\\pi)$ then \\[\\big\\{te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\big\\}\\subset G_\\mu(F)\\] as well as \\[\\big\\{te^{i\\theta} : t\\in (-\\infty,\\alpha^{(2)}(\\theta))\\cup (\\alpha^{(1)}(\\theta),+\\infty)\\big\\}\\cap G_\\mu(F)=\\emptyset.\\] $2)$ $G_\\mu(F)=\\bigcup\\limits_{\\theta\\in [0,\\pi)}\\{z=te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\}.$ $3)$ If $h:=\\varliminf\\limits_{n\\to +\\infty}\\frac{-\\ln |a_n|}{\\ln n}\\in (1,+\\infty)$, then \\[\\Big(\\frac{h}{h-1}\\cdot G_a(F)\\Big)\\supset G_\\mu(F)\\supset G_c(F).\\] If $h=+\\infty$ then $G_a(F)=G_c(F)=G_\\mu(F)$, therefore $G_c(F)$ is also a convex domain.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.594-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, we denote $G_{\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} : n\geq 0\big\}$, respectively. It is well known that $G_\mu(F), G_a(F)$ are convex domains. Let us denote $\mathcal{N}_1(z):=\{n : \Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n : \Re(z\lambda_n)<0\}$ and \[\alpha^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\] Assume that $a_n\to 0$ as $n\to +\infty$. In the article, we prove the following statements. $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\}\subset G_\mu(F)\] as well as \[\big\{te^{i\theta} : t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\] $2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=\varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\] If $h=+\infty$ then $G_a(F)=G_c(F)=G_\mu(F)$, therefore $G_c(F)$ is also a convex domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论带复指数的一般狄利克列数列的收敛域
让$(\lambda_n)$ 是一对不同复数的序列。对于形式狄利克特数列 $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, 我们表示 $G_{\mu}(F),$G_{c}(F)、$G_{a}(F)$ 是最大项 $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} 的存在域、收敛域和绝对收敛域 :n\geq 0\big\}$, respectively.众所周知,$G_\mu(F), G_a(F)$ 是凸域。 让我们表示 $\mathcal{N}_1(z):=\{n :\Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n :\Re(z\lambda_n)<0\}$ and \[α^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\]假设当 $n\to +\infty$ 时,$a_n\to 0$。在本文中,我们将证明以下陈述。 $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} :t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\} (子集 G_\mu(F))] 以及 ([\big\{te^{i\theta} :t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\如果$h=+\infty$,那么$G_a(F)=G_c(F)=G_\mu(F)$,因此$G_c(F)$也是一个凸域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
期刊最新文献
Узагальнені обернені нерівності Єнсена-Штеффенсена та пов’язані нерівності Widths and entropy numbers of the classes of periodic functions of one and several variables in the space $B_{q,1}$ Algebras of symmetric and block-symmetric functions on spaces of Lebesgue measurable functions Апроксимаційні характеристики класів типу Нікольського-Бєсова періодичних функцій багатьох змінних у просторі $B_{q,1}$ Збалансовані числа, які є конкатенацією трьох репдиджитів
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1