On the domain of convergence of general Dirichlet series with complex exponents

IF 1 Q1 MATHEMATICS Carpathian Mathematical Publications Pub Date : 2023-12-30 DOI:10.15330/cmp.15.2.594-607
M.R. Kuryliak, O. Skaskiv
{"title":"On the domain of convergence of general Dirichlet series with complex exponents","authors":"M.R. Kuryliak, O. Skaskiv","doi":"10.15330/cmp.15.2.594-607","DOIUrl":null,"url":null,"abstract":"Let $(\\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\\sum\\limits_{n=0}^{+\\infty} a_ne^{z\\lambda_n}$, $z\\in\\mathbb{C}$, we denote $G_{\\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\\mu(z,F)=\\max\\big\\{|a_n|e^{\\Re(z\\lambda_n)} : n\\geq 0\\big\\}$, respectively. It is well known that $G_\\mu(F), G_a(F)$ are convex domains. Let us denote $\\mathcal{N}_1(z):=\\{n : \\Re(z\\lambda_n)>0\\}$, $\\mathcal{N}_2(z):=\\{n : \\Re(z\\lambda_n)<0\\}$ and \\[\\alpha^{(1)}(\\theta) :=\\varliminf\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_1(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)},\\qquad \\alpha^{(2)}(\\theta) :=\\varlimsup\\limits_{\\genfrac{}{}{0pt}{2}{n\\to +\\infty}{n\\in\\mathcal{N}_2(e^{i\\theta})}}\\frac{-\\ln|a_n|}{\\Re(e^{i\\theta}\\lambda_n)}.\\] Assume that $a_n\\to 0$ as $n\\to +\\infty$. In the article, we prove the following statements. $1)$ If $\\alpha^{(2)}(\\theta)<\\alpha^{(1)}(\\theta)$ for some $\\theta\\in [0,\\pi)$ then \\[\\big\\{te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\big\\}\\subset G_\\mu(F)\\] as well as \\[\\big\\{te^{i\\theta} : t\\in (-\\infty,\\alpha^{(2)}(\\theta))\\cup (\\alpha^{(1)}(\\theta),+\\infty)\\big\\}\\cap G_\\mu(F)=\\emptyset.\\] $2)$ $G_\\mu(F)=\\bigcup\\limits_{\\theta\\in [0,\\pi)}\\{z=te^{i\\theta} : t\\in (\\alpha^{(2)}(\\theta),\\alpha^{(1)}(\\theta))\\}.$ $3)$ If $h:=\\varliminf\\limits_{n\\to +\\infty}\\frac{-\\ln |a_n|}{\\ln n}\\in (1,+\\infty)$, then \\[\\Big(\\frac{h}{h-1}\\cdot G_a(F)\\Big)\\supset G_\\mu(F)\\supset G_c(F).\\] If $h=+\\infty$ then $G_a(F)=G_c(F)=G_\\mu(F)$, therefore $G_c(F)$ is also a convex domain.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":" 16","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.594-607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(\lambda_n)$ be a sequence of the pairwise distinct complex numbers. For a formal Dirichlet series $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, we denote $G_{\mu}(F),$ $G_{c}(F),$ $G_{a}(F)$ the domains of the existence, of the convergence and of the absolute convergence of maximal term $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} : n\geq 0\big\}$, respectively. It is well known that $G_\mu(F), G_a(F)$ are convex domains. Let us denote $\mathcal{N}_1(z):=\{n : \Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n : \Re(z\lambda_n)<0\}$ and \[\alpha^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\] Assume that $a_n\to 0$ as $n\to +\infty$. In the article, we prove the following statements. $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\}\subset G_\mu(F)\] as well as \[\big\{te^{i\theta} : t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\] $2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=\varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\] If $h=+\infty$ then $G_a(F)=G_c(F)=G_\mu(F)$, therefore $G_c(F)$ is also a convex domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论带复指数的一般狄利克列数列的收敛域
让$(\lambda_n)$ 是一对不同复数的序列。对于形式狄利克特数列 $F(z)=\sum\limits_{n=0}^{+\infty} a_ne^{z\lambda_n}$, $z\in\mathbb{C}$, 我们表示 $G_{\mu}(F),$G_{c}(F)、$G_{a}(F)$ 是最大项 $\mu(z,F)=\max\big\{|a_n|e^{\Re(z\lambda_n)} 的存在域、收敛域和绝对收敛域 :n\geq 0\big\}$, respectively.众所周知,$G_\mu(F), G_a(F)$ 是凸域。 让我们表示 $\mathcal{N}_1(z):=\{n :\Re(z\lambda_n)>0\}$, $\mathcal{N}_2(z):=\{n :\Re(z\lambda_n)<0\}$ and \[α^{(1)}(\theta) :=\varliminf\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_1(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)},\qquad \alpha^{(2)}(\theta) :=\varlimsup\limits_{\genfrac{}{}{0pt}{2}{n\to +\infty}{n\in\mathcal{N}_2(e^{i\theta})}}\frac{-\ln|a_n|}{\Re(e^{i\theta}\lambda_n)}.\]假设当 $n\to +\infty$ 时,$a_n\to 0$。在本文中,我们将证明以下陈述。 $1)$ If $\alpha^{(2)}(\theta)<\alpha^{(1)}(\theta)$ for some $\theta\in [0,\pi)$ then \[\big\{te^{i\theta} :t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\big\} (子集 G_\mu(F))] 以及 ([\big\{te^{i\theta} :t\in (-\infty,\alpha^{(2)}(\theta))\cup (\alpha^{(1)}(\theta),+\infty)\big\}\cap G_\mu(F)=\emptyset.\2)$ $G_\mu(F)=\bigcup\limits_{\theta\in [0,\pi)}\{z=te^{i\theta} : t\in (\alpha^{(2)}(\theta),\alpha^{(1)}(\theta))\}.$ $3)$ If $h:=varliminf\limits_{n\to +\infty}\frac{-\ln |a_n|}{\ln n}\in (1,+\infty)$, then \[\Big(\frac{h}{h-1}\cdot G_a(F)\Big)\supset G_\mu(F)\supset G_c(F).\如果$h=+\infty$,那么$G_a(F)=G_c(F)=G_\mu(F)$,因此$G_c(F)$也是一个凸域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
期刊最新文献
Minimal generating sets in groups of $p$-automata Reciprocal distance Laplacian spectral properties double stars and their complements On the domain of convergence of general Dirichlet series with complex exponents Derivations of Mackey algebras On compressed zero divisor graphs associated to the ring of integers modulo $n$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1