Maximilian von Unwerth, Lennart Fox, Max Manthey, Robert Mahoney, Simon Stapperfend, Igor Kolek, Enrico Stoll, Irene Selvanathan
{"title":"Application of CubeSat Technologies for Research and Exploration on the Lunar Surface","authors":"Maximilian von Unwerth, Lennart Fox, Max Manthey, Robert Mahoney, Simon Stapperfend, Igor Kolek, Enrico Stoll, Irene Selvanathan","doi":"10.1007/s42423-023-00144-w","DOIUrl":null,"url":null,"abstract":"<div><p>In view of ESA’s horizon goal of establishing a human presence on the Moon by 2040, the Earth’s moon is increasingly coming into the focus of research and industry. Lunar exploration can benefit from systems developed for low-Earth orbit, as the environmental conditions are overlapping. The development of the CubeSat industry in recent decades has led to a revolution in access to near-Earth space. The goal of Neurospace and its partners is to explore the similarities of both environments for a direct application of existing CubeSat technologies for lunar exploration. Using an open standard and a tiered approach for the development of lunar rovers will allow future missions to focus more on the actual use case rather than the individual development, qualification, and certification of required components. This paper introduces the HiveR rover and provides a classification of the future importance of robotic systems for lunar exploration. It also discusses, in review of past lunar missions, how such rovers differ from previous lunar rovers, and how important they can be in supporting increasingly complex missions. The similarities and differences between the low-Earth orbit and the lunar surface are outlined. Based on this, the new challenges in adapting existing CubeSat technologies for robotics on the lunar surface will be discussed and initial solutions presented. As examples of potential payloads, various experiments are presented, such as a robot arm that was developed to fit in a 1 U volume. It can be used for docking operations between individual systems or various tool handling operations.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"6 2-4","pages":"57 - 72"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-023-00144-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In view of ESA’s horizon goal of establishing a human presence on the Moon by 2040, the Earth’s moon is increasingly coming into the focus of research and industry. Lunar exploration can benefit from systems developed for low-Earth orbit, as the environmental conditions are overlapping. The development of the CubeSat industry in recent decades has led to a revolution in access to near-Earth space. The goal of Neurospace and its partners is to explore the similarities of both environments for a direct application of existing CubeSat technologies for lunar exploration. Using an open standard and a tiered approach for the development of lunar rovers will allow future missions to focus more on the actual use case rather than the individual development, qualification, and certification of required components. This paper introduces the HiveR rover and provides a classification of the future importance of robotic systems for lunar exploration. It also discusses, in review of past lunar missions, how such rovers differ from previous lunar rovers, and how important they can be in supporting increasingly complex missions. The similarities and differences between the low-Earth orbit and the lunar surface are outlined. Based on this, the new challenges in adapting existing CubeSat technologies for robotics on the lunar surface will be discussed and initial solutions presented. As examples of potential payloads, various experiments are presented, such as a robot arm that was developed to fit in a 1 U volume. It can be used for docking operations between individual systems or various tool handling operations.