{"title":"A variational-difference method for numerical simulation of equilibrium capillary surfaces","authors":"Yu. N. Gorbacheva, V. K. Polevikov","doi":"10.37661/1816-0301-2023-20-4-56-68","DOIUrl":null,"url":null,"abstract":"Objectives. A variational-difference method for numerical simulation of equilibrium capillary surfaces based on the minimization of the energy functional is proposed. As a test task a well-known axisymmetric hydrostatic problem on equilibrium shapes of a drop adjacent to a horizontal rotating plane under gravity is considered. The mathematical model of the problem is built on the basis of the variational principle: the shape of the drop satisfies the minimum total energy for a given volume. The problem of the functional minimization is reduced to a system of nonlinear equations using the finite element method. To solve the system a Newton's iterative method is applied.Methods. The variational-difference approach (the finite element method) is used. The finite linear functions are chosen as basic functions.Results. Equilibrium shapes of a drop on a rotating plane are constructed by the finite element method in a wide range of defining parameters: Bond number, rotational Weber number and wetting angle. The influence of these parameters on the shape of a drop is investigated. The numerical results are matched with the results obtained using the iterative-difference approach over the entire range of physical stability with respect to axisymmetric perturbations.Conclusion. The finite element method responds to the loss of stability of a drop with respect to axisymmetric perturbations. Therefore it can be used to study the stability of the equilibrium of axisymmetric capillary surfaces.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":"71 s317","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37661/1816-0301-2023-20-4-56-68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives. A variational-difference method for numerical simulation of equilibrium capillary surfaces based on the minimization of the energy functional is proposed. As a test task a well-known axisymmetric hydrostatic problem on equilibrium shapes of a drop adjacent to a horizontal rotating plane under gravity is considered. The mathematical model of the problem is built on the basis of the variational principle: the shape of the drop satisfies the minimum total energy for a given volume. The problem of the functional minimization is reduced to a system of nonlinear equations using the finite element method. To solve the system a Newton's iterative method is applied.Methods. The variational-difference approach (the finite element method) is used. The finite linear functions are chosen as basic functions.Results. Equilibrium shapes of a drop on a rotating plane are constructed by the finite element method in a wide range of defining parameters: Bond number, rotational Weber number and wetting angle. The influence of these parameters on the shape of a drop is investigated. The numerical results are matched with the results obtained using the iterative-difference approach over the entire range of physical stability with respect to axisymmetric perturbations.Conclusion. The finite element method responds to the loss of stability of a drop with respect to axisymmetric perturbations. Therefore it can be used to study the stability of the equilibrium of axisymmetric capillary surfaces.