Plasmonic Nanocone Scanning Antenna: Fabrication and Optical Properties

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2023-12-28 DOI:10.1002/adpr.202300058
Haritha Kambalathmana, Assegid Mengistu Flatae, Claudio Biagini, Francesco Tantussi, Francesco De Angelis, Mario Agio
{"title":"Plasmonic Nanocone Scanning Antenna: Fabrication and Optical Properties","authors":"Haritha Kambalathmana,&nbsp;Assegid Mengistu Flatae,&nbsp;Claudio Biagini,&nbsp;Francesco Tantussi,&nbsp;Francesco De Angelis,&nbsp;Mario Agio","doi":"10.1002/adpr.202300058","DOIUrl":null,"url":null,"abstract":"<p>Optical antennas are nanostructures that introduce unprecedented possibilities for light–matter interaction at the nanoscale. An appropriately tailored plasmonic antenna can enhance the total radiative decay rate and modify the angular radiation pattern of a single-quantum emitter through controlled near-field coupling. Despite their ability to surpass the fundamental diffraction limit and confine the electromagnetic field to a tiny mode volume, fabricating 3D sharp scanning nanoscale plasmonic structures with desired aspect ratio is yet an ambitious goal. The fabrication of nanocones by gold evaporation on commercial atomic force microscopy probes followed by a focused ion beam milling technique is presented. The method is versatile and allows the fabrication of nanocones with desired dimensions around 100 nm along with an aspect ratio of ≈1. Their optical properties are studied and it is shown how the variation in the refractive index of the dielectric substrate affects the localized surface plasmon resonance of the nanocones, the decay rate enhancement, and the quantum yield of an emitter relevant for fluorescence/Raman scanning experiments. Theoretical studies using finite-difference time-domain calculations have guided the fabrication process and are consistent with experimental results.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical antennas are nanostructures that introduce unprecedented possibilities for light–matter interaction at the nanoscale. An appropriately tailored plasmonic antenna can enhance the total radiative decay rate and modify the angular radiation pattern of a single-quantum emitter through controlled near-field coupling. Despite their ability to surpass the fundamental diffraction limit and confine the electromagnetic field to a tiny mode volume, fabricating 3D sharp scanning nanoscale plasmonic structures with desired aspect ratio is yet an ambitious goal. The fabrication of nanocones by gold evaporation on commercial atomic force microscopy probes followed by a focused ion beam milling technique is presented. The method is versatile and allows the fabrication of nanocones with desired dimensions around 100 nm along with an aspect ratio of ≈1. Their optical properties are studied and it is shown how the variation in the refractive index of the dielectric substrate affects the localized surface plasmon resonance of the nanocones, the decay rate enhancement, and the quantum yield of an emitter relevant for fluorescence/Raman scanning experiments. Theoretical studies using finite-difference time-domain calculations have guided the fabrication process and are consistent with experimental results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子纳米锥扫描天线:制造与光学特性
光学天线是一种纳米结构,为纳米尺度的光物质相互作用带来了前所未有的可能性。经过适当定制的等离子天线可以通过可控的近场耦合提高单量子发射器的总辐射衰减率并改变其角度辐射模式。尽管它们能够超越基本衍射极限并将电磁场限制在极小的模式体积内,但制造具有所需长宽比的三维尖锐扫描纳米级质子结构仍是一个雄心勃勃的目标。本文介绍了通过在商用原子力显微镜探针上蒸发金,然后采用聚焦离子束铣削技术制造纳米锥的方法。该方法用途广泛,可制造出所需尺寸在 100 纳米左右、长宽比≈1 的纳米锥。研究表明,电介质基底折射率的变化如何影响纳米锥的局部表面等离子体共振、衰减率增强以及荧光/拉曼扫描实验相关发射器的量子产率。利用有限差分时域计算进行的理论研究为制造过程提供了指导,并与实验结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Masthead Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch Masthead Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1