{"title":"Capacity and Energy Efficiency of TeraHertz Surface Wave Interconnects","authors":"Jie Qing, Miguel Navarro-Cía","doi":"10.1002/adpr.202300250","DOIUrl":null,"url":null,"abstract":"<p>The potential of geometrically induced terahertz surface wave technology for communications can only be realized if communication links based on them are studied and benchmarked. The frequency-dependent transmission characteristics of interconnects based on three different archetypal textured surfaces (namely, gratings, dominos, nails) are analyzed numerically and the impact of the geometry and realistic surface roughness on the maximum capacity and energy efficiency is quantified. Unlike conventional hollow waveguides, the analysis shows that the capacity of uncoated corrugated surfaces is limited by loss and not dispersion. This work provides the guidelines for the design of terahertz surface wave interconnects.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300250","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of geometrically induced terahertz surface wave technology for communications can only be realized if communication links based on them are studied and benchmarked. The frequency-dependent transmission characteristics of interconnects based on three different archetypal textured surfaces (namely, gratings, dominos, nails) are analyzed numerically and the impact of the geometry and realistic surface roughness on the maximum capacity and energy efficiency is quantified. Unlike conventional hollow waveguides, the analysis shows that the capacity of uncoated corrugated surfaces is limited by loss and not dispersion. This work provides the guidelines for the design of terahertz surface wave interconnects.