Hyperspectral image restoration based on color superpixel segmentation

Huiying Huang, Shaoting Peng, Gaohang Yu, Jinhong Huang, Wenyu Hu
{"title":"Hyperspectral image restoration based on color superpixel segmentation","authors":"Huiying Huang, Shaoting Peng, Gaohang Yu, Jinhong Huang, Wenyu Hu","doi":"10.19139/soic-2310-5070-1912","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSI) are often degraded by various types of noise during the acquisition process, such as Gaussian noise, impulse noise, dead lines and stripes, etc. Recently, there exists a growing attenrion on low-rank matrix/tensor-based methods for HSI data restoration, assuming that the overall data is low-rank. However, the assumption of overall low-rankness often proves inaccurate due to the spatially heterogeneous local similarity characteristics of HSI. Traditional cube-based methods involve dividing the HSI into fixed-size cubes. However, using fixed-size cubes does not provide flexible coverage of locally similar regions at varying scales. Inspired by superpixel segmentation, this paper proposes the Shrink Low-rank Super-tensor (SLRST) approach for HSI recovery. Instead of using fixed-size cubes, SLRST employs a size-adaptive super-tensor. The proposed approach is effectively solved using the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on HSI data verify that the proposed method outperforms other competing methods.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"52 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images (HSI) are often degraded by various types of noise during the acquisition process, such as Gaussian noise, impulse noise, dead lines and stripes, etc. Recently, there exists a growing attenrion on low-rank matrix/tensor-based methods for HSI data restoration, assuming that the overall data is low-rank. However, the assumption of overall low-rankness often proves inaccurate due to the spatially heterogeneous local similarity characteristics of HSI. Traditional cube-based methods involve dividing the HSI into fixed-size cubes. However, using fixed-size cubes does not provide flexible coverage of locally similar regions at varying scales. Inspired by superpixel segmentation, this paper proposes the Shrink Low-rank Super-tensor (SLRST) approach for HSI recovery. Instead of using fixed-size cubes, SLRST employs a size-adaptive super-tensor. The proposed approach is effectively solved using the Alternating Direction Method of Multipliers (ADMM). Numerical experiments on HSI data verify that the proposed method outperforms other competing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于彩色超像素分割的高光谱图像复原
高光谱图像(HSI)在采集过程中经常会受到各种噪声的影响,如高斯噪声、脉冲噪声、死线和条纹等。最近,基于低秩矩阵/张量的 HSI 数据修复方法受到越来越多的关注,这种方法假定整体数据是低秩的。然而,由于 HSI 在空间上具有异质性的局部相似性特征,整体低秩的假设往往被证明是不准确的。传统的基于立方体的方法是将 HSI 分成固定大小的立方体。然而,使用固定大小的立方体无法灵活覆盖不同尺度的局部相似区域。受超像素分割的启发,本文提出了缩减低秩超张量(SLRST)方法来恢复 HSI。SLRST 不使用固定大小的立方体,而是采用大小自适应的超级张量。使用交替方向乘法(ADMM)可以有效地解决所提出的方法。对恒星仪数据的数值实验验证了所提出的方法优于其他竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1