Sustainable supercapacitor with a natural rubber‐based electrolyte and natural graphite‐based electrodes

IF 2.9 Q2 ELECTROCHEMISTRY Electrochemical science advances Pub Date : 2023-12-26 DOI:10.1002/elsa.202300025
K. Perera, K. Vidanapathirana, Lewis J. Adams, N. Balakrishnan
{"title":"Sustainable supercapacitor with a natural rubber‐based electrolyte and natural graphite‐based electrodes","authors":"K. Perera, K. Vidanapathirana, Lewis J. Adams, N. Balakrishnan","doi":"10.1002/elsa.202300025","DOIUrl":null,"url":null,"abstract":"Supercapacitors are at the forefront of energy storage devices due to their ability to fulfill quick power requirements. However, safety and cost are important parameters for their real‐world applications. Green materials‐based electrodes and electrolytes can make them safer and cost‐effective. Herein, a supercapacitor based on a methyl‐grafted natural rubber/salt‐based electrolyte and natural graphite (NG)‐based electrodes are fabricated and characterized. Zinc trifluoromethanesulfonate [Zn(CF3SO3)2] is used as the salt for the electrolyte. A mixture of NG, activated charcoal, and polyvinylidenefluoride is used for electrodes. Our supercapacitor shows a single electrode specific capacitance, Csc of 4.2 Fg−1 from impedance measurement. Moreover, the capacitive and resistive features are dominant at low and high frequencies, respectively. The cyclic voltammetry test shows the dependence of Csc on the scan rate with a high value at slow scan rates. Performance of the supercapacitor during 5000 charge and discharge cycles at a constant current of 90 μA shows a rapid decrease of single electrode specific discharge capacitance at the beginning, but it starts to stabilize after about 2500 cycles. These findings are relevant to further developments of green materials‐based supercapacitors, offering opportunities to expand the functionalities of supercapacitors in green technologies.","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/elsa.202300025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors are at the forefront of energy storage devices due to their ability to fulfill quick power requirements. However, safety and cost are important parameters for their real‐world applications. Green materials‐based electrodes and electrolytes can make them safer and cost‐effective. Herein, a supercapacitor based on a methyl‐grafted natural rubber/salt‐based electrolyte and natural graphite (NG)‐based electrodes are fabricated and characterized. Zinc trifluoromethanesulfonate [Zn(CF3SO3)2] is used as the salt for the electrolyte. A mixture of NG, activated charcoal, and polyvinylidenefluoride is used for electrodes. Our supercapacitor shows a single electrode specific capacitance, Csc of 4.2 Fg−1 from impedance measurement. Moreover, the capacitive and resistive features are dominant at low and high frequencies, respectively. The cyclic voltammetry test shows the dependence of Csc on the scan rate with a high value at slow scan rates. Performance of the supercapacitor during 5000 charge and discharge cycles at a constant current of 90 μA shows a rapid decrease of single electrode specific discharge capacitance at the beginning, but it starts to stabilize after about 2500 cycles. These findings are relevant to further developments of green materials‐based supercapacitors, offering opportunities to expand the functionalities of supercapacitors in green technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用天然橡胶电解质和天然石墨电极的可持续超级电容器
超级电容器能够满足快速的电力需求,因此处于储能设备的最前沿。然而,安全和成本是其实际应用的重要参数。基于绿色材料的电极和电解质可以使超级电容器更安全、更经济。本文制备了一种基于甲基接枝天然橡胶/盐基电解质和天然石墨(NG)电极的超级电容器,并对其进行了表征。电解质采用三氟甲磺酸锌[Zn(CF3SO3)2]。电极使用了 NG、活性炭和聚偏氟乙烯的混合物。阻抗测量显示,我们的超级电容器的单电极比电容 Csc 为 4.2 Fg-1。此外,电容和电阻特性分别在低频和高频时占主导地位。循环伏安测试表明,Csc 与扫描速率有关,扫描速率较低时,Csc 值较高。在 90 μA 的恒定电流下,超级电容器在 5000 次充放电循环期间的性能表明,单电极比放电电容在开始时迅速下降,但在大约 2500 次循环后开始趋于稳定。这些发现与基于绿色材料的超级电容器的进一步开发有关,为扩大超级电容器在绿色技术中的功能提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
High‐Speed AFM Observation of Electrolytic Hydrogen Nanobubbles During Potential Scanning Electrochemical Contributions: Svante August Arrhenius (1859–1927) Electron Transfer Reaction Studies of Usnic Acid and Its Biosynthetic Precursor Methylphloroacetophenone Investigating the kinetics of small alcohol oxidation reactions using platinum supported on a doped niobium suboxide support Round‐robin test of all‐solid‐state battery with sulfide electrolyte assembly in coin‐type cell configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1