首页 > 最新文献

Electrochemical science advances最新文献

英文 中文
Optimizing Fire Suppression Strategies for Lithium-Ion Battery Thermal Runaway: A Comparative Study of Foam-Based Extinguishing Protocols 锂离子电池热失控的优化灭火策略:泡沫灭火方案的比较研究
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2026-02-06 DOI: 10.1002/elsa.70019
Zhongbin Fei, Jihua Zhang, Huanhuan Guo, Renjie Yang

The rapid adoption of electric vehicles (EVs) has intensified the focus on lithium-ion battery (LIB) fire safety, particularly the risks posed by thermal runaway (TR). This study evaluates the performance of a novel foam-based fire extinguishing agent under two distinct application protocols: Protocol 1, employing intermittent short-duration sprays, and Protocol 2, involving an initial prolonged spray followed by intermittent applications. Within the two tested configuration–protocol pairs, the intermittent-spray protocol achieved 2.75 times greater extinguishing efficiency than the prolonged-spray protocol, while conserving resources and providing sustained cooling. Soft-pack LIBs, with their layered structure, facilitated deeper foam penetration, resulting in faster cooling (2.8°C/s) and effective smoke suppression. In contrast, hard-shell LIBs, characterized by their rigid design, exhibited slower cooling (1.10°C/s) and prolonged smoke dissipation due to limited foam diffusion. These findings emphasize the importance of tailoring suppression strategies to battery design and highlight the superior performance of intermittent foam application. This work provides a framework for optimizing fire safety protocols in large LIB storage systems with freely accessible battery packs and offers configuration-specific insights rather than a full protocol ranking.

随着电动汽车(ev)的迅速普及,人们对锂离子电池(LIB)火灾安全的关注日益加剧,尤其是热失控(TR)带来的风险。本研究评估了一种新型泡沫灭火剂在两种不同应用协议下的性能:协议1,采用间歇性短时间喷雾,协议2,涉及最初的长时间喷雾,然后间歇性应用。在测试的两组配置协议中,间歇喷雾协议的灭火效率是长时间喷雾协议的2.75倍,同时节省资源并提供持续冷却。软包装lib具有分层结构,有助于更深的泡沫渗透,从而更快的冷却(2.8°C/s)和有效的烟雾抑制。相比之下,硬壳lib具有刚性设计的特点,由于泡沫扩散有限,冷却速度较慢(1.10°C/s),烟雾消散时间较长。这些发现强调了定制抑制策略对电池设计的重要性,并突出了间歇泡沫应用的优越性能。这项工作为优化大型LIB存储系统的消防安全协议提供了一个框架,该系统具有可自由访问的电池组,并提供了特定于配置的见解,而不是完整的协议排名。
{"title":"Optimizing Fire Suppression Strategies for Lithium-Ion Battery Thermal Runaway: A Comparative Study of Foam-Based Extinguishing Protocols","authors":"Zhongbin Fei,&nbsp;Jihua Zhang,&nbsp;Huanhuan Guo,&nbsp;Renjie Yang","doi":"10.1002/elsa.70019","DOIUrl":"https://doi.org/10.1002/elsa.70019","url":null,"abstract":"<p>The rapid adoption of electric vehicles (EVs) has intensified the focus on lithium-ion battery (LIB) fire safety, particularly the risks posed by thermal runaway (TR). This study evaluates the performance of a novel foam-based fire extinguishing agent under two distinct application protocols: Protocol 1, employing intermittent short-duration sprays, and Protocol 2, involving an initial prolonged spray followed by intermittent applications. Within the two tested configuration–protocol pairs, the intermittent-spray protocol achieved 2.75 times greater extinguishing efficiency than the prolonged-spray protocol, while conserving resources and providing sustained cooling. Soft-pack LIBs, with their layered structure, facilitated deeper foam penetration, resulting in faster cooling (2.8°C/s) and effective smoke suppression. In contrast, hard-shell LIBs, characterized by their rigid design, exhibited slower cooling (1.10°C/s) and prolonged smoke dissipation due to limited foam diffusion. These findings emphasize the importance of tailoring suppression strategies to battery design and highlight the superior performance of intermittent foam application. This work provides a framework for optimizing fire safety protocols in large LIB storage systems with freely accessible battery packs and offers configuration-specific insights rather than a full protocol ranking.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Power Alkali-Free Direct Formate Fuel Cell Enabled by Optimized Ionomer Loading With a Cation-Exchange Membrane 用阳离子交换膜优化离子负载实现大功率无碱直接甲酸盐燃料电池
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2026-02-02 DOI: 10.1002/elsa.70017
Yiming Wang, Fahimah Abd Lah Halim, Madihah Miskan, Kakeru Fujiwara, Yugo Osaka, Akio Kodama, Takuya Tsujiguchi

Direct formate fuel cells (DFFCs) provide a safe liquid-fuel pathway for renewable energy storage, yet achieving high performance under alkali-free conditions remains challenging due to limitations in ion transport and catalyst-layer structure. Here, for the first time, a cation-exchange membrane (CEM) was combined with cationic ionomers (CI) in both catalyst layers to establish a fully alkali-free configuration, and the effects of ionomer loading were systematically examined. Optimizing the anode ionomer content to ionomer-to-carbon (I/C) ratio of 0.83 produced a well-balanced liquid–catalyst–ionomer triple-phase boundary and improved reaction kinetics. Fuel-composition analysis revealed that Na+ transport across the CEM accounted for only 20%–30% of the theoretical value, indicating that proton transport dominates charge compensation under alkali-free operation. At the cathode, reducing CI content enhanced oxygen transport by thinning the ionomer film and increasing access to catalytic sites, achieving a peak power density of 92 mW·cm−2—over twice that of previously reported alkali-free Na-ion-conducting DFFCs. Although lower ionomer loading increased HCOO crossover and accelerated voltage decay, these results demonstrate that appropriate CI tuning in both electrodes effectively balances oxygen transport, crossover and ion conduction, thereby enabling substantially improved performance in alkali-free DFFCs without external alkali additives.

直接甲酸盐燃料电池(DFFCs)为可再生能源存储提供了一种安全的液体燃料途径,但由于离子传输和催化剂层结构的限制,在无碱条件下实现高性能仍然具有挑战性。本文首次将阳离子交换膜(CEM)与阳离子离聚体(CI)结合在两个催化剂层中,建立了完全无碱的结构,并系统地研究了离子负载的影响。优化后的阳极离聚物与碳(I/C)比为0.83,得到了平衡良好的液体-催化剂-离聚物三相边界,改善了反应动力学。燃料成分分析表明,通过CEM的Na+输运仅占理论值的20%-30%,表明在无碱操作下,质子输运主导了电荷补偿。在阴极,CI含量的降低通过稀释离子膜和增加对催化位点的访问来增强氧传输,实现了92 mW·cm−2的峰值功率密度,是之前报道的无碱na离子导电DFFCs的两倍。虽然较低的离聚体负载增加了HCOO -交叉和加速了电压衰减,但这些结果表明,在两个电极中适当的CI调整有效地平衡了氧传输、交叉和离子传导,从而大大提高了无碱DFFCs的性能。
{"title":"High-Power Alkali-Free Direct Formate Fuel Cell Enabled by Optimized Ionomer Loading With a Cation-Exchange Membrane","authors":"Yiming Wang,&nbsp;Fahimah Abd Lah Halim,&nbsp;Madihah Miskan,&nbsp;Kakeru Fujiwara,&nbsp;Yugo Osaka,&nbsp;Akio Kodama,&nbsp;Takuya Tsujiguchi","doi":"10.1002/elsa.70017","DOIUrl":"https://doi.org/10.1002/elsa.70017","url":null,"abstract":"<p>Direct formate fuel cells (DFFCs) provide a safe liquid-fuel pathway for renewable energy storage, yet achieving high performance under alkali-free conditions remains challenging due to limitations in ion transport and catalyst-layer structure. Here, for the first time, a cation-exchange membrane (CEM) was combined with cationic ionomers (CI) in both catalyst layers to establish a fully alkali-free configuration, and the effects of ionomer loading were systematically examined. Optimizing the anode ionomer content to ionomer-to-carbon (I/C) ratio of 0.83 produced a well-balanced liquid–catalyst–ionomer triple-phase boundary and improved reaction kinetics. Fuel-composition analysis revealed that Na<sup>+</sup> transport across the CEM accounted for only 20%–30% of the theoretical value, indicating that proton transport dominates charge compensation under alkali-free operation. At the cathode, reducing CI content enhanced oxygen transport by thinning the ionomer film and increasing access to catalytic sites, achieving a peak power density of 92 mW·cm<sup>−2</sup>—over twice that of previously reported alkali-free Na-ion-conducting DFFCs. Although lower ionomer loading increased HCOO<sup>−</sup> crossover and accelerated voltage decay, these results demonstrate that appropriate CI tuning in both electrodes effectively balances oxygen transport, crossover and ion conduction, thereby enabling substantially improved performance in alkali-free DFFCs without external alkali additives.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K-MODEL: Kinetic Modelling and Electrochemical Mechanism of Dimethylamine Borane Oxidation K-MODEL:二甲胺硼烷氧化动力学模型及电化学机理
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2026-01-30 DOI: 10.1002/elsa.70016
Huize Xue, Milad Torabfam, Jingfei Peng, Hamza Javed, Ella Joasil, Omowunmi Sadik
<p>Here, we present K-MODEL (Kinetic Modelling framework for Electrochemical Mechanisms), a practical methodology that integrates electrochemical voltammetry, kinetic parameter extraction and simulation to unravel the electrochemical oxidation mechanism of dimethylamine borane (DMAB). DMAB is a key reducing agent used in hydrogen storage, pharmaceuticals, electroless plating and semiconductor fabrication, yet its reaction mechanism remains only partially understood. Determining kinetic and thermodynamic parameters is essential for understanding redox processes and optimizing electrochemical systems, but such data are often inconsistent or unavailable in literature. In this study, a combination of cyclic voltammetry (CV), chronoamperometry (CA) and hydrodynamic voltammetry (HDV), together with the self-developed open-source tool <i>Envismetrics</i>, was used to determine essential parameters including the diffusion coefficient (<span></span><math> <semantics> <mi>D</mi> <annotation>$D$</annotation> </semantics></math>), standard rate constant (<span></span><math> <semantics> <msub> <mi>k</mi> <mn>0</mn> </msub> <annotation>${{k}_0}$</annotation> </semantics></math>) and formal potential (<span></span><math> <semantics> <msub> <mi>E</mi> <mi>f</mi> </msub> <annotation>${{E}_f}$</annotation> </semantics></math>). Simulations carried out using KISSA-1D software confirmed the experimental findings and identified a three-step continuous oxidation mechanism for DMAB. The formal potentials were determined as <span></span><math> <semantics> <mrow> <mo>−</mo> <mn>0.84</mn> <mspace></mspace> <mi>V</mi> </mrow> <annotation>$ - 0.84;{mathrm{V}}$</annotation> </semantics></math> (<span></span><math> <semantics> <msub> <mi>E</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> <annotation>${{E}_{{mathrm{f1}}}}$</annotation> </semantics></math>), <span></span><math> <semantics> <mrow> <mn>0.12</mn> <mspace></mspace> <mi>V</mi> </mrow> <annotation>$0.12;{mathrm{V}}$</annotation> </semantics></math> (<span></span><math> <semantics> <msub> <mi>E</mi> <mrow> <
在这里,我们提出了K-MODEL(电化学机制动力学建模框架),这是一种集成了电化学伏安法、动力学参数提取和模拟的实用方法,以揭示二甲胺硼烷(DMAB)的电化学氧化机制。DMAB是一种重要的还原剂,用于储氢、制药、化学镀和半导体制造等领域,但其反应机理尚不完全清楚。确定动力学和热力学参数对于理解氧化还原过程和优化电化学系统至关重要,但这些数据在文献中往往不一致或不可用。在这项研究中,循环伏安法(CV)、计时伏安法(CA)和流体动力伏安法(HDV)结合使用自主开发的开源工具Envismetrics来确定基本参数,包括扩散系数(D$ D$)、标准速率常数(k 0 ${{k}_0}$)和形式势(E f ${{E}_f}$)。使用KISSA-1D软件进行的模拟证实了实验结果,并确定了DMAB的三步连续氧化机制。形式电位为- 0.84 V $ - 0.84;{mathrm{V}}$ (E f1 ${{E}_{{mathrm{f1}}}}$), 0.12 V $0.12;{mathrm{V}}$ (E f2 ${{E}_{mathrm{f2}}}}$)和0.25 V $0.25;{ mathm {V}}$ (E f3 ${{E}_{{ mathm {f3}}}}$),对应的速率常数为1.42 × 10−4 $1.42 乘以{{10}^{- 4}}$,1.07 times{{10}^{- 3}}$和2.59 × 10−3 cm/s $2.59 times {{10}^{- 3}}{math {cm/s}}$。中间体的扩散系数计算为2.09 × 10−6 cm m2 / s2美元。 09 times {{10}^{- 6}}{mathrm{c}}{{{mathrm{m}}}^2}/{mathrm{s}}$ for bh3 (OH)−$ {mathrm {B}——{{喝mathrm {H(_3}——{{{ mathrm心情哦。 }}} )}^ - }$ ,2.68 × 10−5 cm2 / s $2.68 乘以{{10}^{-5}}{mathrm{c}}{{{mathrm{m}}}^2}/{mathrm{s}}$ bh2 (OH) 2−$ { B mathrm{}——{{ mathrm {H _2……({{ mathrm{哦)_2…… ^ - $ ,9.28 × 10−5 cm2 / s $9.28 times {{10}^{-5}}{mathrm{c}}{{{mathrm{m}} ^2}/{mathrm{s}}$ for BH (OH) 3−${mathrm{BH}}({{mathrm{OH}}})_3^ - $ and1.90 × 10−6 cm2 / s $1.90 times {{10}^{- 6}};{mathrm{c}}{{{mathrm{m}}}^2}/{mathrm{s}}$ for B (OH) 4−${mathrm{B}}({{mathrm{OH}}})_4^ - $ -与可用的有限值一致(通常范围从8.55 × 10−6到2.3 × 10−5 cm2/s),并反映了D对分子结构的依赖。这些结果验证了K-MODEL方法的鲁棒性,并为复杂电化学反应机制的研究提供了一个可靠的框架,广泛适用于科学研究和工业过程。
{"title":"K-MODEL: Kinetic Modelling and Electrochemical Mechanism of Dimethylamine Borane Oxidation","authors":"Huize Xue,&nbsp;Milad Torabfam,&nbsp;Jingfei Peng,&nbsp;Hamza Javed,&nbsp;Ella Joasil,&nbsp;Omowunmi Sadik","doi":"10.1002/elsa.70016","DOIUrl":"https://doi.org/10.1002/elsa.70016","url":null,"abstract":"&lt;p&gt;Here, we present K-MODEL (Kinetic Modelling framework for Electrochemical Mechanisms), a practical methodology that integrates electrochemical voltammetry, kinetic parameter extraction and simulation to unravel the electrochemical oxidation mechanism of dimethylamine borane (DMAB). DMAB is a key reducing agent used in hydrogen storage, pharmaceuticals, electroless plating and semiconductor fabrication, yet its reaction mechanism remains only partially understood. Determining kinetic and thermodynamic parameters is essential for understanding redox processes and optimizing electrochemical systems, but such data are often inconsistent or unavailable in literature. In this study, a combination of cyclic voltammetry (CV), chronoamperometry (CA) and hydrodynamic voltammetry (HDV), together with the self-developed open-source tool &lt;i&gt;Envismetrics&lt;/i&gt;, was used to determine essential parameters including the diffusion coefficient (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;annotation&gt;$D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;), standard rate constant (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${{k}_0}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) and formal potential (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${{E}_f}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;). Simulations carried out using KISSA-1D software confirmed the experimental findings and identified a three-step continuous oxidation mechanism for DMAB. The formal potentials were determined as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;0.84&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ - 0.84;{mathrm{V}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${{E}_{{mathrm{f1}}}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;), &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0.12&lt;/mn&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$0.12;{mathrm{V}}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspective on the Technology Status of Chemical Hydrogen Carriers for Ship-Based Energy Import 船用能源进口用化学氢载体技术现状展望
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2026-01-29 DOI: 10.1002/elsa.70015
Andreas Peschel, Peter Wasserscheid

The transport of hydrogen for the import of renewable energy will play an important role for the highly industrialized regions in Europe to meet their energy needs. As the storage and transportation of neat hydrogen comes with considerable downsides with respect to energy density and infrastructure compatibility, chemical hydrogen carriers are a promising concept to enable large-scale hydrogen import. This perspective discusses the advantages, limitations and current technology readiness levels of chemical hydrogen carriers for intercontinental transport by ship. In terms of rapid scale-up and market entry, ammonia and methanol are the most promising short-term options. If the market for chemical hydrogen carriers grows as expected, it is likely that chemical hydrogen carriers optimized for certain applications will coexist, optimizing the individual value chains.

用于进口可再生能源的氢运输将在欧洲高度工业化地区满足其能源需求方面发挥重要作用。由于纯氢的储存和运输在能量密度和基础设施兼容性方面存在相当大的缺点,化学氢载体是实现大规模氢进口的一个有前途的概念。这一观点讨论了用于洲际船舶运输的化学氢载体的优势、局限性和目前的技术准备水平。就快速扩大规模和进入市场而言,氨和甲醇是最有希望的短期选择。如果化学氢载体市场按预期增长,那么针对某些应用进行优化的化学氢载体很可能会共存,从而优化各个价值链。
{"title":"Perspective on the Technology Status of Chemical Hydrogen Carriers for Ship-Based Energy Import","authors":"Andreas Peschel,&nbsp;Peter Wasserscheid","doi":"10.1002/elsa.70015","DOIUrl":"https://doi.org/10.1002/elsa.70015","url":null,"abstract":"<p>The transport of hydrogen for the import of renewable energy will play an important role for the highly industrialized regions in Europe to meet their energy needs. As the storage and transportation of neat hydrogen comes with considerable downsides with respect to energy density and infrastructure compatibility, chemical hydrogen carriers are a promising concept to enable large-scale hydrogen import. This perspective discusses the advantages, limitations and current technology readiness levels of chemical hydrogen carriers for intercontinental transport by ship. In terms of rapid scale-up and market entry, ammonia and methanol are the most promising short-term options. If the market for chemical hydrogen carriers grows as expected, it is likely that chemical hydrogen carriers optimized for certain applications will coexist, optimizing the individual value chains.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urea Biosensor Based on a Field-Effect Capacitor Modified With a Stacked Weak Polyelectrolyte/Enzyme Bilayer 基于叠加弱聚电解质/酶双分子层的场效应电容器的尿素生物传感器
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-29 DOI: 10.1002/elsa.70013
Astghik S. Tsokolakyan, Vardan A. Hayrapetyan, Derenik K. Petrosyan, Melanie Welden, Heiko Iken, Michael J. Schöning, Mkrtich A. Yeranosyan, Arshak Poghossian

Urea is formed from the metabolism of proteins and used as a biomarker for diagnosing and monitoring various medical conditions. In this work, a urea biosensor based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked polyelectrolyte polyallylamine hydrochloride (PAH)/urease bilayer prepared by the layer-by-layer (LbL) technique is presented for the first time. The LbL formation of the PAH/urease bilayer was monitored with an underlying charge-sensitive Al/p-Si/SiO2/Ta2O5 EISCAP using convenient capacitive-voltage and constant-capacitance mode measurements. Urea-sensitive EISCAP biosensors were electrochemically characterised in buffer solutions and artificial urine (AU) samples spiked with various concentrations of urea between 0.1 mM and 50 mM. The biosensors exhibited urea sensitivities of ca. 35.4 mV/dec and 32.1 mV/dec in buffer and AU solutions, respectively. Finally, local surface pH changes as a function of urea concentration have been evaluated. The obtained findings demonstrate the potential of PAH/urease-modified EISCAPs for non-invasive urea biomarker detection in urine samples at homecare or in-field settings.

尿素是由蛋白质代谢形成的,用作诊断和监测各种医疗状况的生物标志物。在这项工作中,首次提出了一种基于电解质-绝缘体-半导体电容器(EISCAP)的尿素生物传感器,该电容器采用逐层(LbL)技术制备的堆叠聚电解质聚丙烯胺盐酸盐(PAH)/脲酶双分子层进行修饰。通过方便的容电压和恒电容模式测量,使用电荷敏感的Al/p-Si/SiO2/Ta2O5 EISCAP来监测PAH/脲酶双分子层的LbL形成。对尿素敏感的EISCAP生物传感器在0.1 mM至50 mM的缓冲溶液和人工尿液(AU)样品中进行了电化学表征。该生物传感器在缓冲溶液和AU溶液中的尿素敏感性分别为35.4 mV/dec和32.1 mV/dec。最后,局部表面pH值随尿素浓度的变化进行了评价。所获得的研究结果表明,多环芳烃/脲酶修饰的eiscap在家庭护理或野外环境中对尿液样本进行无创尿素生物标志物检测的潜力。
{"title":"Urea Biosensor Based on a Field-Effect Capacitor Modified With a Stacked Weak Polyelectrolyte/Enzyme Bilayer","authors":"Astghik S. Tsokolakyan,&nbsp;Vardan A. Hayrapetyan,&nbsp;Derenik K. Petrosyan,&nbsp;Melanie Welden,&nbsp;Heiko Iken,&nbsp;Michael J. Schöning,&nbsp;Mkrtich A. Yeranosyan,&nbsp;Arshak Poghossian","doi":"10.1002/elsa.70013","DOIUrl":"https://doi.org/10.1002/elsa.70013","url":null,"abstract":"<p>Urea is formed from the metabolism of proteins and used as a biomarker for diagnosing and monitoring various medical conditions. In this work, a urea biosensor based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked polyelectrolyte polyallylamine hydrochloride (PAH)/urease bilayer prepared by the layer-by-layer (LbL) technique is presented for the first time. The LbL formation of the PAH/urease bilayer was monitored with an underlying charge-sensitive Al/p-Si/SiO<sub>2</sub>/Ta<sub>2</sub>O<sub>5</sub> EISCAP using convenient capacitive-voltage and constant-capacitance mode measurements. Urea-sensitive EISCAP biosensors were electrochemically characterised in buffer solutions and artificial urine (AU) samples spiked with various concentrations of urea between 0.1 mM and 50 mM. The biosensors exhibited urea sensitivities of ca. 35.4 mV/dec and 32.1 mV/dec in buffer and AU solutions, respectively. Finally, local surface pH changes as a function of urea concentration have been evaluated. The obtained findings demonstrate the potential of PAH/urease-modified EISCAPs for non-invasive urea biomarker detection in urine samples at homecare or in-field settings.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Electrochemical Performance of Supercapacitors Using Fe3O4-Doped Biomass-Derived Activated Carbon Electrodes fe3o4掺杂生物质活性炭电极增强超级电容器电化学性能
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-29 DOI: 10.1002/elsa.70014
Kadir Sinan Aslan, Erdal Ertaş, Mehmet Firat Baran, Abdulkadir Levent, Şeyhmus Tümür, Aziz Eftekhari, Ondrej Šauša, Oleh Smutok, Taras Kavetskyy, Evgeny Katz

The energy storage performance of supercapacitors—defined by specific capacitance, energy density, and power density—is strongly influenced by the structural and electrochemical properties of electrode materials. While cathode development has advanced significantly, research on efficient and sustainable anode materials remains limited, hindering further improvements in energy density. This study presents a low-cost, sustainable anode material derived from Abelmoschus esculentus (AE) seed biomass. Activated carbon (AE-AC) was prepared via chemical activation and subsequently coated with magnetic Fe3O4 nanoparticles synthesised through co-precipitation to form an AE-AC-doped Fe3O4 nanocomposite. The materials were characterised using XRD, SEM–EDX, BET surface area analysis, and other techniques. Electrochemical performance was evaluated using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). At a scan rate of 2.5 mV/s, both electrodes exhibited peak capacitance. GCD analysis showed specific capacitances of 119.97 F/g for AE-AC and 205.86 F/g for AE-AC-doped Fe3O4 at 0.05 A/g. EIS results confirmed enhanced performance of the nanocomposite in acidic medium. These findings highlight the potential of AE-based activated carbon composites as environmentally friendly and efficient anode materials for next-generation supercapacitors.

超级电容器的储能性能——由比电容、能量密度和功率密度定义——受电极材料的结构和电化学性能的强烈影响。虽然阴极的发展取得了显著进展,但对高效和可持续的阳极材料的研究仍然有限,阻碍了能量密度的进一步提高。本研究提出了一种低成本、可持续发展的负极材料,该材料来源于Abelmoschus esculentus (AE)种子生物量。通过化学活化法制备活性炭(AE-AC),并包覆共沉淀法合成的磁性Fe3O4纳米颗粒,形成AE-AC掺杂Fe3O4纳米复合材料。采用XRD, SEM-EDX, BET表面积分析等技术对材料进行了表征。电化学性能采用循环伏安法(CV)、恒流充放电法(GCD)和电化学阻抗谱法(EIS)进行评价。在扫描速率为2.5 mV/s时,两个电极均表现出峰值电容。GCD分析显示,在0.05 A/g下,掺AE-AC的Fe3O4比电容为119.97 F/g,掺AE-AC的Fe3O4比电容为205.86 F/g。EIS结果证实了纳米复合材料在酸性介质中的性能增强。这些发现突出了ae基活性炭复合材料作为下一代超级电容器的环保高效负极材料的潜力。
{"title":"Enhanced Electrochemical Performance of Supercapacitors Using Fe3O4-Doped Biomass-Derived Activated Carbon Electrodes","authors":"Kadir Sinan Aslan,&nbsp;Erdal Ertaş,&nbsp;Mehmet Firat Baran,&nbsp;Abdulkadir Levent,&nbsp;Şeyhmus Tümür,&nbsp;Aziz Eftekhari,&nbsp;Ondrej Šauša,&nbsp;Oleh Smutok,&nbsp;Taras Kavetskyy,&nbsp;Evgeny Katz","doi":"10.1002/elsa.70014","DOIUrl":"https://doi.org/10.1002/elsa.70014","url":null,"abstract":"<p>The energy storage performance of supercapacitors—defined by specific capacitance, energy density, and power density—is strongly influenced by the structural and electrochemical properties of electrode materials. While cathode development has advanced significantly, research on efficient and sustainable anode materials remains limited, hindering further improvements in energy density. This study presents a low-cost, sustainable anode material derived from <i>Abelmoschus esculentus</i> (AE) seed biomass. Activated carbon (AE-AC) was prepared via chemical activation and subsequently coated with magnetic Fe<sub>3</sub>O<sub>4</sub> nanoparticles synthesised through co-precipitation to form an AE-AC-doped Fe<sub>3</sub>O<sub>4</sub> nanocomposite. The materials were characterised using XRD, SEM–EDX, BET surface area analysis, and other techniques. Electrochemical performance was evaluated using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS). At a scan rate of 2.5 mV/s, both electrodes exhibited peak capacitance. GCD analysis showed specific capacitances of 119.97 F/g for AE-AC and 205.86 F/g for AE-AC-doped Fe<sub>3</sub>O<sub>4</sub> at 0.05 A/g. EIS results confirmed enhanced performance of the nanocomposite in acidic medium. These findings highlight the potential of AE-based activated carbon composites as environmentally friendly and efficient anode materials for next-generation supercapacitors.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145984048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Dry Cathode Configuration in Anion Exchange Membrane Water Electrolysis: A Mini Review 阴离子交换膜电解中干阴极结构的评价:综述
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-08-22 DOI: 10.1002/elsa.70012
Kiran Kiran, Edwin Bumenn, Hans Kungl, Eva Jodat, André Karl, Rüdiger-A. Eichel

Anion exchange membrane (AEM) electrolysis is one of the most promising water electrolysis technologies, combining the advantages of proton exchange membrane (PEM) electrolysis, such as high gas purity, high current densities and dynamic operation, while using cheap transition metal electrocatalysts known from alkaline water electrolysis (AWE). AEM water electrolysis (AEMWE), when operated liquid (electrolyte or water) free (dry) at the cathode side, offers simplified water management, reducing the balance-of-plant. Numerous factors, such as cell design, membrane properties, flow rate of electrolyte and operation parameters, directly or indirectly, impact the performance of AEMWE, which becomes even more vital when the cathode compartment is operated liquid free. Herein, this work presents a comprehensive overview of several factors involved in the performance of a dry cathode AEMWE. Advancements and challenges in membrane materials, asymmetric electrolyte feeds and operating parameters were analysed. Finally, to have a durable and efficient AEMWE, this article discusses current development on the dry cathode AEMWE technology and outlines prospective avenues for further improving the system.

阴离子交换膜(AEM)电解是最有前途的水电解技术之一,它结合了质子交换膜(PEM)电解的优点,如高气体纯度、高电流密度和动态操作,同时使用了碱性水电解(AWE)中已知的廉价过渡金属电催化剂。AEM水电解(AEMWE)在阴极侧无(干)液体(电解质或水)运行时,简化了水管理,降低了工厂的平衡。电池设计、膜性能、电解质流速和操作参数等诸多因素都会直接或间接地影响AEMWE的性能,当阴极室无液运行时,这一点变得更加重要。在这里,这项工作提出了涉及干阴极AEMWE性能的几个因素的全面概述。分析了膜材料、不对称电解质进料和操作参数方面的研究进展和面临的挑战。最后,本文讨论了干阴极AEMWE技术的发展现状,并展望了进一步改进该系统的前景。
{"title":"Assessment of Dry Cathode Configuration in Anion Exchange Membrane Water Electrolysis: A Mini Review","authors":"Kiran Kiran,&nbsp;Edwin Bumenn,&nbsp;Hans Kungl,&nbsp;Eva Jodat,&nbsp;André Karl,&nbsp;Rüdiger-A. Eichel","doi":"10.1002/elsa.70012","DOIUrl":"https://doi.org/10.1002/elsa.70012","url":null,"abstract":"<p>Anion exchange membrane (AEM) electrolysis is one of the most promising water electrolysis technologies, combining the advantages of proton exchange membrane (PEM) electrolysis, such as high gas purity, high current densities and dynamic operation, while using cheap transition metal electrocatalysts known from alkaline water electrolysis (AWE). AEM water electrolysis (AEMWE), when operated liquid (electrolyte or water) free (dry) at the cathode side, offers simplified water management, reducing the balance-of-plant. Numerous factors, such as cell design, membrane properties, flow rate of electrolyte and operation parameters, directly or indirectly, impact the performance of AEMWE, which becomes even more vital when the cathode compartment is operated liquid free. Herein, this work presents a comprehensive overview of several factors involved in the performance of a dry cathode AEMWE. Advancements and challenges in membrane materials, asymmetric electrolyte feeds and operating parameters were analysed. Finally, to have a durable and efficient AEMWE, this article discusses current development on the dry cathode AEMWE technology and outlines prospective avenues for further improving the system.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145983955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Sensitive Dopamine Electrochemical Sensor Using Pt Nanoparticles on CNTs/Polypyrrole Nanocomposites 基于纳米Pt纳米材料的高灵敏度多巴胺电化学传感器
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-08-10 DOI: 10.1002/elsa.70011
N. I. Nayem, S. Ahmed, Md. A. Rashed, Jahir Ahmed, M. Faisal, Jari S. Algethami, Ahmed Mohamed El-Toni, Farid A. Harraz

Dopamine (DA) plays a vital role as a neurotransmitter in the central nervous system (CNS), and its accurate quantification is essential for diagnosing neurological disorders. However, selective and sensitive detection of DA in complex biological matrices remains a challenge due to interference from coexisting biomolecules. In this study, a platinum nanoparticle-decorated carbon nanotubes/polypyrrole-carbon (Pt@CNTs/PPy-C) nanocomposite was synthesized via a facile two-step process involving ultrasonication and photo-reduction, eliminating the need for stabilizers or dispersants. Structural and morphological analysis confirmed the uniform distribution of Pt nanoparticles within the CNTs/PPy-C matrix, enhancing electrocatalytic activity. Electrochemical kinetic studies revealed that DA electro-oxidation on the nanocomposite-modified glassy carbon electrode (GCE) follows adsorption-controlled kinetics, with a transfer coefficient (α) of 0.51 and a heterogeneous rate constant of 8.37 s−1. Differential pulse voltammetry (DPV) demonstrated a high sensitivity of 3.45 µA µM−1 cm−2 over a linear range of 2.0–24.0 µM with a detection limit of 0.034 µM. The sensor exhibited outstanding selectivity for DA in the presence of various interfering species, along with excellent reproducibility, repeatability and stability. Additionally, the sensor demonstrated high accuracy and reliability in detecting DA in a commercial pharmaceutical formulation, with recovery rates ranging from 96.72% to 101.40%. These findings highlight the potential of the Pt@CNTs/PPy-C nanocomposite as a promising electrocatalyst for DA detection, contributing to the development of highly efficient electrochemical sensors for biomedical and pharmaceutical applications.

多巴胺(DA)作为一种神经递质在中枢神经系统(CNS)中起着至关重要的作用,其准确定量对神经系统疾病的诊断至关重要。然而,由于共存生物分子的干扰,复杂生物基质中DA的选择性和敏感性检测仍然是一个挑战。在这项研究中,铂纳米粒子修饰的碳纳米管/聚吡咯-碳(Pt@CNTs/ py -c)纳米复合材料通过简单的两步工艺合成,包括超声和光还原,不需要稳定剂或分散剂。结构和形态分析证实了Pt纳米颗粒在CNTs/ py - c基体中的均匀分布,增强了电催化活性。电化学动力学研究表明,DA在纳米复合修饰玻碳电极(GCE)上的电氧化符合吸附控制动力学,传递系数(α)为0.51,非均相速率常数为8.37 s−1。差分脉冲伏安法(DPV)在2.0-24.0µM的线性范围内具有3.45µaµM−1 cm−2的高灵敏度,检测限为0.034µM。该传感器在多种干扰物质存在下对DA具有良好的选择性,同时具有良好的再现性、重复性和稳定性。此外,该传感器对商业制剂中DA的检测具有较高的准确性和可靠性,回收率为96.72% ~ 101.40%。这些发现突出了Pt@CNTs/ py - c纳米复合材料作为一种有前途的DA检测电催化剂的潜力,有助于开发用于生物医学和制药应用的高效电化学传感器。
{"title":"Highly Sensitive Dopamine Electrochemical Sensor Using Pt Nanoparticles on CNTs/Polypyrrole Nanocomposites","authors":"N. I. Nayem,&nbsp;S. Ahmed,&nbsp;Md. A. Rashed,&nbsp;Jahir Ahmed,&nbsp;M. Faisal,&nbsp;Jari S. Algethami,&nbsp;Ahmed Mohamed El-Toni,&nbsp;Farid A. Harraz","doi":"10.1002/elsa.70011","DOIUrl":"https://doi.org/10.1002/elsa.70011","url":null,"abstract":"<p>Dopamine (DA) plays a vital role as a neurotransmitter in the central nervous system (CNS), and its accurate quantification is essential for diagnosing neurological disorders. However, selective and sensitive detection of DA in complex biological matrices remains a challenge due to interference from coexisting biomolecules. In this study, a platinum nanoparticle-decorated carbon nanotubes/polypyrrole-carbon (Pt@CNTs/PPy-C) nanocomposite was synthesized via a facile two-step process involving ultrasonication and photo-reduction, eliminating the need for stabilizers or dispersants. Structural and morphological analysis confirmed the uniform distribution of Pt nanoparticles within the CNTs/PPy-C matrix, enhancing electrocatalytic activity. Electrochemical kinetic studies revealed that DA electro-oxidation on the nanocomposite-modified glassy carbon electrode (GCE) follows adsorption-controlled kinetics, with a transfer coefficient (<i>α</i>) of 0.51 and a heterogeneous rate constant of 8.37 s<sup>−1</sup>. Differential pulse voltammetry (DPV) demonstrated a high sensitivity of 3.45 µA µM<sup>−1</sup> cm<sup>−2</sup> over a linear range of 2.0–24.0 µM with a detection limit of 0.034 µM. The sensor exhibited outstanding selectivity for DA in the presence of various interfering species, along with excellent reproducibility, repeatability and stability. Additionally, the sensor demonstrated high accuracy and reliability in detecting DA in a commercial pharmaceutical formulation, with recovery rates ranging from 96.72% to 101.40%. These findings highlight the potential of the Pt@CNTs/PPy-C nanocomposite as a promising electrocatalyst for DA detection, contributing to the development of highly efficient electrochemical sensors for biomedical and pharmaceutical applications.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145987000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Concentration of Lithium Bis(fluorosulfonyl)imide on the Performance of Silicon Anodes for Li-Ion Batteries 双(氟磺酰)亚胺锂浓度对锂离子电池硅负极性能的影响
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-07-21 DOI: 10.1002/elsa.70009
K. Asheim, N. P. Wagner, P. E. Vullum, C. E. L. Foss, J. P. Mæhlen, A. M. Svensson

The conventional electrolytes for Li-ion batteries are based on the LiPF6${rm LiPF}_6$ salt and carbonate solvents. Due to challenges with the stability, alternative salts are sought, and lithium bis(fluorosulfonyl)imide (LiFSI) is an interesting candidate. In this work, we investigate the performance of concentrated electrolytes based on LiFSI (range 1–10 M) and carbonate solvents, in combination with low-cost, micron-sized silicon anodes. LiFSI has an excellent solubility, and by use of concentrated electrolytes, corrosion of the aluminium current collector on the cathode side can be avoided, which is otherwise a challenge. The 5 M LiFSI electrolyte (molar salt to solvent ratio of 1:2.5) shows a similar ohmic resistance and rate performance as the 1 M LiFSI electrolyte. The solid electrolyte interphase formed in 5 M LiFSI is thin and dominated by inorganic compounds, in particular LiF. For long-term galvanostatic cycling with a lower cut-off potential of 50 mV, the 1 M LiFSI electrolyte shows the best stability. However, by limiting the lithiation, and thus the expansion of the silicon by increasing the cut-off voltage to 120 mV, the cycling performance is similar for all electrolytes and electrodes deliver >$>$ 1000 mAh/g for more than 300 cycles.

锂离子电池的传统电解质是基于lipf6 ${rm LiPF}_6$盐和碳酸盐溶剂。由于稳定性方面的挑战,人们正在寻找替代盐,而二氟磺酰亚胺锂(LiFSI)是一个有趣的候选者。在这项工作中,我们研究了基于LiFSI(范围1-10 M)和碳酸盐溶剂的浓缩电解质的性能,并结合低成本,微米尺寸的硅阳极。LiFSI具有优异的溶解度,并且通过使用浓缩电解质,可以避免阴极侧铝集流器的腐蚀,否则这是一个挑战。5 M的LiFSI电解质(摩尔盐与溶剂的比例为1:25 .5)表现出与1 M的LiFSI电解质相似的欧姆电阻和速率性能。在5m LiFSI中形成的固体电解质界面很薄,以无机化合物为主,特别是LiF。在较低的截止电位为50 mV的长期恒流循环中,1m的LiFSI电解质表现出最好的稳定性。然而,通过限制锂化,从而通过将截止电压提高到120 mV来膨胀硅,所有电解质和电极的循环性能相似,在300多次循环中提供>;$ >$ 1000 mAh/g。
{"title":"Effect of Concentration of Lithium Bis(fluorosulfonyl)imide on the Performance of Silicon Anodes for Li-Ion Batteries","authors":"K. Asheim,&nbsp;N. P. Wagner,&nbsp;P. E. Vullum,&nbsp;C. E. L. Foss,&nbsp;J. P. Mæhlen,&nbsp;A. M. Svensson","doi":"10.1002/elsa.70009","DOIUrl":"https://doi.org/10.1002/elsa.70009","url":null,"abstract":"<p>The conventional electrolytes for Li-ion batteries are based on the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>LiPF</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <annotation>${rm LiPF}_6$</annotation>\u0000 </semantics></math> salt and carbonate solvents. Due to challenges with the stability, alternative salts are sought, and lithium bis(fluorosulfonyl)imide (LiFSI) is an interesting candidate. In this work, we investigate the performance of concentrated electrolytes based on LiFSI (range 1–10 M) and carbonate solvents, in combination with low-cost, micron-sized silicon anodes. LiFSI has an excellent solubility, and by use of concentrated electrolytes, corrosion of the aluminium current collector on the cathode side can be avoided, which is otherwise a challenge. The 5 M LiFSI electrolyte (molar salt to solvent ratio of 1:2.5) shows a similar ohmic resistance and rate performance as the 1 M LiFSI electrolyte. The solid electrolyte interphase formed in 5 M LiFSI is thin and dominated by inorganic compounds, in particular LiF. For long-term galvanostatic cycling with a lower cut-off potential of 50 mV, the 1 M LiFSI electrolyte shows the best stability. However, by limiting the lithiation, and thus the expansion of the silicon by increasing the cut-off voltage to 120 mV, the cycling performance is similar for all electrolytes and electrodes deliver <span></span><math>\u0000 <semantics>\u0000 <mo>&gt;</mo>\u0000 <annotation>$&gt;$</annotation>\u0000 </semantics></math> 1000 mAh/g for more than 300 cycles.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145993993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transistor Channel Current Modulation: A Measure of Salt Stress in Two Different Succulent Species 晶体管通道电流调制:两种不同肉质植物盐胁迫的测量
IF 4.1 Q2 ELECTROCHEMISTRY Pub Date : 2025-07-13 DOI: 10.1002/elsa.70010
Sneha M, N. Murugesan, Jitendra Kumar, V. Jayaraman

The ability of organic electrochemical transistor–based biosensor to distinguish between salt stress tolerances of two different succulent species, Cactaceae and Euphorbia Milii, has been demonstrated. Channel current modulation at the transistor's output has been established as the sensing tool. An equivalent electric circuit model for the in vivo biosensor device has been derived with the help of electrochemical impedance spectroscopy technique.

有机电化学晶体管生物传感器的能力,以区分两种不同的肉质物种,仙人掌和大戟耐盐性,已经证明。晶体管输出端的通道电流调制已被建立为传感工具。利用电化学阻抗谱技术建立了体内生物传感器的等效电路模型。
{"title":"Transistor Channel Current Modulation: A Measure of Salt Stress in Two Different Succulent Species","authors":"Sneha M,&nbsp;N. Murugesan,&nbsp;Jitendra Kumar,&nbsp;V. Jayaraman","doi":"10.1002/elsa.70010","DOIUrl":"https://doi.org/10.1002/elsa.70010","url":null,"abstract":"<p>The ability of organic electrochemical transistor–based biosensor to distinguish between salt stress tolerances of two different succulent species, <i>Cactaceae</i> and <i>Euphorbia Milii</i>, has been demonstrated. Channel current modulation at the transistor's output has been established as the sensing tool. An equivalent electric circuit model for the in vivo biosensor device has been derived with the help of electrochemical impedance spectroscopy technique.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"6 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145987194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electrochemical science advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1