The hexagonal-orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy: being triggered by pre-existing orthorhombic embryos

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2023-12-25 DOI:10.1088/1674-1056/ad188d
Tingting Zhang, Y. Gong, Ziqian Lu, Feng Xu
{"title":"The hexagonal-orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy: being triggered by pre-existing orthorhombic embryos","authors":"Tingting Zhang, Y. Gong, Ziqian Lu, Feng Xu","doi":"10.1088/1674-1056/ad188d","DOIUrl":null,"url":null,"abstract":"The thermal-elastic martensitic transformation from high-temperature Ni2In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely observed in MnMX (M=Ni or Co, and X=Ge or Si) alloys. However, the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear. This paper investigates the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi. One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature (M s). With the cooling of the sample to M s, the laths extend broader, indicating that the martensitic transformation starts from these pre-existing orthorhombic laths. Microstructure observation suggests that these pre-existing orthorhombic laths are not originated from the hexagonal-orthorhombic martensitic transformation because of the difference in atomic occupations of doping elements in the hexagonal parent and pre-existing orthorhombic laths. The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent. Therefore, the orthorhombic martensite can take these pre-existing laths as embryos and grow up. This work implies that the martensitic transformation in MnNiSi1-x(CoNiGe)x alloy is initiated by orthorhombic embryos.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"27 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad188d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal-elastic martensitic transformation from high-temperature Ni2In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely observed in MnMX (M=Ni or Co, and X=Ge or Si) alloys. However, the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear. This paper investigates the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi. One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature (M s). With the cooling of the sample to M s, the laths extend broader, indicating that the martensitic transformation starts from these pre-existing orthorhombic laths. Microstructure observation suggests that these pre-existing orthorhombic laths are not originated from the hexagonal-orthorhombic martensitic transformation because of the difference in atomic occupations of doping elements in the hexagonal parent and pre-existing orthorhombic laths. The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent. Therefore, the orthorhombic martensite can take these pre-existing laths as embryos and grow up. This work implies that the martensitic transformation in MnNiSi1-x(CoNiGe)x alloy is initiated by orthorhombic embryos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MnNiSi1-x(CoNiGe)x 合金中的六方-正方马氏体转变:由预先存在的正方体胚胎引发
在 MnMX(M=Ni 或 Co,X=Ge 或 Si)合金中广泛观察到从高温 Ni2In 型六方结构到低温 TiNiSi- 型正方体结构的热弹性马氏体转变。然而,正方体马氏体如何在六方母体中成核和生长的答案仍不清楚。本文研究了 Co 和 Ge 共取代锰镍硅合金中的六方-正方马氏体转变。在温度高于马氏体转变起始温度(M s)时,可以发现一些正方体板条嵌入六方母体中。当样品冷却到 M s 时,板条延伸得更宽,这表明马氏体转变是从这些预先存在的正方体板条开始的。显微结构观察表明,这些预先存在的正菱形板条并非源于六方-正菱形马氏体转变,因为六方母体和预先存在的正菱形板条中掺杂元素的原子占位不同。现象晶体学理论和实验研究证明,原有的正方体板条和生成的正方体马氏体与六方母体具有相同的晶体学关系。因此,正方马氏体可以将这些预先存在的板条作为胚胎并成长起来。这项研究表明,MnNiSi1-x(CoNiGe)x 合金中的马氏体转变是由正方体胚开始的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1