Lingyun Kong, Xinan Li, Shengqing He, Chufeng Wu, Yi Peng, Hanqing Wang, Qiang Shao, Allen A Zhang
{"title":"Study on the influence of spent-catalysts microphysical properties on FCC/asphalt Interface interaction","authors":"Lingyun Kong, Xinan Li, Shengqing He, Chufeng Wu, Yi Peng, Hanqing Wang, Qiang Shao, Allen A Zhang","doi":"10.1093/iti/liad027","DOIUrl":null,"url":null,"abstract":"This research aims to quantify the interfacial interaction mechanism between the fluid catalytic cracking (FCC) spent catalyst and asphalt. The two types of spent-catalysts, three types of mineral powders, and their bituminous slurries are selected to complete the tests of Microscopic morphological, specific surface area, surface energy, fourier transform infrared spectroscopy (FT-IR), specific adhesion work, and interaction parameter C-value for FCC-spent-catalysts in laboratory. The results indicate that: (1), the physical properties of FCC-spent-catalyst compared with mineral powder when the particle size ranging from −2.2 ~ 5.4 μm between FCC-spent-catalysts and mineral powder, the specific surface area of FCC-spent-catalyst was 100 to 900 fold that of mineral powder, while the alkali value of FCC-spent-catalysts was 2 to 8 fold that of mineral powder; no significant difference was observed in surface energy; (2), the mixture system did not produce new functional groups after FCC-spent-catalyst addition to the asphalt mixture system; (3), the adhesion work of FCC-spent-catalyst was close to that of mineral powder, the specific adhesion work was 74 to 763 fold that of mineral powder when they have the similar particle size; (4), the interaction parameter C-value between FCC-spent-catalyst and asphalt was higher than the interaction between mineral powder and asphalt at identical test temperatures. This study demonstrates that the FCC-spent-catalyst have the potential to improve the in-service performance of the pavement under high-temperature and moisture damage in terms of a larger specific surface area and stronger.","PeriodicalId":191628,"journal":{"name":"Intelligent Transportation Infrastructure","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Transportation Infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/iti/liad027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to quantify the interfacial interaction mechanism between the fluid catalytic cracking (FCC) spent catalyst and asphalt. The two types of spent-catalysts, three types of mineral powders, and their bituminous slurries are selected to complete the tests of Microscopic morphological, specific surface area, surface energy, fourier transform infrared spectroscopy (FT-IR), specific adhesion work, and interaction parameter C-value for FCC-spent-catalysts in laboratory. The results indicate that: (1), the physical properties of FCC-spent-catalyst compared with mineral powder when the particle size ranging from −2.2 ~ 5.4 μm between FCC-spent-catalysts and mineral powder, the specific surface area of FCC-spent-catalyst was 100 to 900 fold that of mineral powder, while the alkali value of FCC-spent-catalysts was 2 to 8 fold that of mineral powder; no significant difference was observed in surface energy; (2), the mixture system did not produce new functional groups after FCC-spent-catalyst addition to the asphalt mixture system; (3), the adhesion work of FCC-spent-catalyst was close to that of mineral powder, the specific adhesion work was 74 to 763 fold that of mineral powder when they have the similar particle size; (4), the interaction parameter C-value between FCC-spent-catalyst and asphalt was higher than the interaction between mineral powder and asphalt at identical test temperatures. This study demonstrates that the FCC-spent-catalyst have the potential to improve the in-service performance of the pavement under high-temperature and moisture damage in terms of a larger specific surface area and stronger.