Hiroya Sakumomto, Taketoshi Nakayama, Yuto Miyatake, K. Toprasertpong, Shinichi Takagi, M. Takenaka
{"title":"Numerical evaluation of bandwidth and optical loss in InP-organic hybrid optical modulator with doping optimization","authors":"Hiroya Sakumomto, Taketoshi Nakayama, Yuto Miyatake, K. Toprasertpong, Shinichi Takagi, M. Takenaka","doi":"10.35848/1347-4065/ad189b","DOIUrl":null,"url":null,"abstract":"We examine the influence of doping profile optimization on the trade-off relationship between modulation bandwidth and optical loss in an InP-organic hybrid (IOH) optical modulator, comparing it with a Si-organic hybrid (SOH) optical modulator. By incorporating the RF transmission line model, which enables a more precise modulation bandwidth analysis than the RC constant model, we demonstrate that the IOH modulator can achieve a modulation bandwidth of over 500 GHz with a 2 dB loss, capitalizing on the higher electron mobility of InP. In contrast, the SOH modulator cannot attain a 200 GHz modulation bandwidth with acceptable optical loss. Furthermore, we explore the potential for further enhancing the modulation bandwidth of the IOH modulator by shortening its length, making the IOH modulator a promising candidate for future ultra-high-speed optical modulation.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"90 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad189b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the influence of doping profile optimization on the trade-off relationship between modulation bandwidth and optical loss in an InP-organic hybrid (IOH) optical modulator, comparing it with a Si-organic hybrid (SOH) optical modulator. By incorporating the RF transmission line model, which enables a more precise modulation bandwidth analysis than the RC constant model, we demonstrate that the IOH modulator can achieve a modulation bandwidth of over 500 GHz with a 2 dB loss, capitalizing on the higher electron mobility of InP. In contrast, the SOH modulator cannot attain a 200 GHz modulation bandwidth with acceptable optical loss. Furthermore, we explore the potential for further enhancing the modulation bandwidth of the IOH modulator by shortening its length, making the IOH modulator a promising candidate for future ultra-high-speed optical modulation.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS