The net peak splitting phenomenon in square-wave voltammetry – A simple diagnostic tool to distinguish between surface electrode mechanisms associated with different chemical reactions
{"title":"The net peak splitting phenomenon in square-wave voltammetry – A simple diagnostic tool to distinguish between surface electrode mechanisms associated with different chemical reactions","authors":"R. Gulaboski","doi":"10.20450/mjcce.2023.2782","DOIUrl":null,"url":null,"abstract":"Utilizing pulse voltammetric techniques for the electrochemical analysis of lipophilic redox systems has proven to be an effective method for studying a diverse range of redox compounds, from simple molecules to intricate proteins. To extract relevant thermodynamic and kinetic data from electrochemical analysis of redox systems exhibiting strong surface activity, there's a crucial need to decipher the underlying electrochemical mechanism in the system being examined. The \"split net peak\" phenomenon, a defining characteristic observed in all surface-active redox systems featuring fast electron transfer under square-wave voltammetry conditions, has been investigated in this study to establish diagnostic criteria for identifying surface electrochemical mechanisms associated with preceding, subsequent, regenerative, and reactant-inactivating chemical reactions. This understanding can be achieved by tracking the influence of the chemical reaction rate on the split square-wave voltammetric peaks in a particular electrochemical mechanism. The approach reported in the current work enables a very simple and precise differentiation between the elaborated mechanisms frequently encountered in protein-film voltammetry methodologies.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":"405 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2023.2782","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizing pulse voltammetric techniques for the electrochemical analysis of lipophilic redox systems has proven to be an effective method for studying a diverse range of redox compounds, from simple molecules to intricate proteins. To extract relevant thermodynamic and kinetic data from electrochemical analysis of redox systems exhibiting strong surface activity, there's a crucial need to decipher the underlying electrochemical mechanism in the system being examined. The "split net peak" phenomenon, a defining characteristic observed in all surface-active redox systems featuring fast electron transfer under square-wave voltammetry conditions, has been investigated in this study to establish diagnostic criteria for identifying surface electrochemical mechanisms associated with preceding, subsequent, regenerative, and reactant-inactivating chemical reactions. This understanding can be achieved by tracking the influence of the chemical reaction rate on the split square-wave voltammetric peaks in a particular electrochemical mechanism. The approach reported in the current work enables a very simple and precise differentiation between the elaborated mechanisms frequently encountered in protein-film voltammetry methodologies.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.