Analysis and Prediction of Factors Influencing Carbon Emissions of Energy Consumption Under Climate Change

Kunyue Zhang, Mingru Tao, Jinmin Hao
{"title":"Analysis and Prediction of Factors Influencing Carbon Emissions of Energy Consumption Under Climate Change","authors":"Kunyue Zhang, Mingru Tao, Jinmin Hao","doi":"10.13052/spee1048-5236.4314","DOIUrl":null,"url":null,"abstract":"Climate change is one of the major challenges currently facing the world. The factors influencing the carbon emission of energy consumption and the future trend are important guidance for proposing scientific carbon reduction strategies to mitigate climate change. In this paper, the Logarithmic Mean Divisia Index (LMDI) model and stochastic impacts by regression population, affluence and technology (STIRPAT) model are established to analyze and predict the carbon emission of energy consumption. The LMDI model is used to factorize the CO2 changes generated by residential domestic energy consumption, and to decompose and analyze the carbon emission factors of residential domestic energy consumption in terms of energy carbon emission intensity, energy consumption structure, energy consumption intensity, economic development, and population to determine the driving factors leading to carbon emission changes; based on the above study, we set up nine different development scenarios and applied the scalable stochastic environmental impact assessment model to project energy carbon emissions in 2035; based on carbon emission prediction and analysis, the CO2 emissions of total energy consumption, total electricity consumption, industrial energy consumption and terminal energy consumption were selected, and the correlation coefficients with relevant climate indicators such as temperature change and humidity change were analyzed, and the stress model of energy consumption on climate change was constructed. The results show that: the correlation coefficients of energy consumption indicators and temperature change indicators all pass the significance test at P = 0.01 level, among which the correlation coefficients with temperature difference are the highest, all of them are greater than 0.9 and pass the significance test at P = 0.001 level; among the indicators of energy consumption, the correlation coefficient between total industrial energy consumption and temperature difference was slightly higher than that of total energy consumption and electricity consumption; the stress relationship between the increase of energy consumption and the temperature difference is consistent with the growth of the third polynomial curve.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is one of the major challenges currently facing the world. The factors influencing the carbon emission of energy consumption and the future trend are important guidance for proposing scientific carbon reduction strategies to mitigate climate change. In this paper, the Logarithmic Mean Divisia Index (LMDI) model and stochastic impacts by regression population, affluence and technology (STIRPAT) model are established to analyze and predict the carbon emission of energy consumption. The LMDI model is used to factorize the CO2 changes generated by residential domestic energy consumption, and to decompose and analyze the carbon emission factors of residential domestic energy consumption in terms of energy carbon emission intensity, energy consumption structure, energy consumption intensity, economic development, and population to determine the driving factors leading to carbon emission changes; based on the above study, we set up nine different development scenarios and applied the scalable stochastic environmental impact assessment model to project energy carbon emissions in 2035; based on carbon emission prediction and analysis, the CO2 emissions of total energy consumption, total electricity consumption, industrial energy consumption and terminal energy consumption were selected, and the correlation coefficients with relevant climate indicators such as temperature change and humidity change were analyzed, and the stress model of energy consumption on climate change was constructed. The results show that: the correlation coefficients of energy consumption indicators and temperature change indicators all pass the significance test at P = 0.01 level, among which the correlation coefficients with temperature difference are the highest, all of them are greater than 0.9 and pass the significance test at P = 0.001 level; among the indicators of energy consumption, the correlation coefficient between total industrial energy consumption and temperature difference was slightly higher than that of total energy consumption and electricity consumption; the stress relationship between the increase of energy consumption and the temperature difference is consistent with the growth of the third polynomial curve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化下能源消耗碳排放影响因素分析与预测
气候变化是当前世界面临的重大挑战之一。能源消耗碳排放的影响因素及未来趋势对提出科学的碳减排策略以减缓气候变化具有重要指导意义。本文建立了对数平均指数(LMDI)模型和回归人口、富裕程度和技术的随机影响(STIRPAT)模型来分析和预测能源消耗的碳排放。利用 LMDI 模型对居民生活能源消费产生的二氧化碳变化进行因子化,从能源碳排放强度、能源消费结构、能源消费强度、经济发展、人口等方面对居民生活能源消费的碳排放因子进行分解分析,确定导致碳排放变化的驱动因素;在上述研究的基础上,设定九种不同的发展情景,应用可扩展的随机环境影响评估模型对 2035 年的能源碳排放进行预测;在碳排放预测分析的基础上,选取能源消费总量、电力消费总量、工业能源消费总量和终端能源消费总量的二氧化碳排放量,分析其与气温变化、湿度变化等相关气候指标的相关系数,构建能源消费对气候变化的压力模型。结果表明:能耗指标与温度变化指标的相关系数均在 P = 0.01 水平上通过显著性检验,其中与温差的相关系数最高,均大于 0.9,且在 P = 0.001 水平下通过显著性检验;在能耗指标中,工业总能耗与温差的相关系数略高于总能耗与电耗的相关系数;能耗增加与温差的应力关系符合三次多项式曲线的增长关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
期刊最新文献
Application of Digital Economy Machine Learning Algorithm for Predicting Carbon Trading Prices Under Carbon Reduction Trends Low-Carbon Economic Dispatch of Integrated Energy Systems in Multi-Form Energy-intensive Parks Based on the ICT-GRU Prediction Model Installation Technique and Numerical Simulation of Stress on High-Pile Footings During the Translation of Offshore Booster Stations Analysis of the Factors Affecting the Logistics Efficiency of Urban Farm Products in the Context of Low-carbon Economy The Relationship Between Green Finance, Sustainable Technological Innovation and Energy Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1