Wei Jiang, Jilai Xue, Kaixi Jiang, Xunxiong Jiang, Shengdong Wang, Jinping Hu, Derek O Northwood, K. E. Waters, Hao Ma
{"title":"Recovery of Valuable Metals from Polymetallic Refractory Concentrate by a Sulfuric Acid Curing and Leaching Method","authors":"Wei Jiang, Jilai Xue, Kaixi Jiang, Xunxiong Jiang, Shengdong Wang, Jinping Hu, Derek O Northwood, K. E. Waters, Hao Ma","doi":"10.3390/separations11010007","DOIUrl":null,"url":null,"abstract":"Sulfuric acid curing and leaching is a promising technology for treating refractory ores. In this work, a refractory concentrate containing 3191 ppm uranium (U), 2135 ppm niobium (Nb), and 0.7% rare earth minerals (REMs) went through two stages: curing by high-concentration H2SO4 and leaching by low-concentration H2SO4. We investigated the behavior of those valuable metals during the two stages. For both curing and leaching, the operating parameters include the acid-to-solid ratio, time, temperature, and H2SO4 concentration. The recovery for U, Nb, and REMs was as high as 95%, 86%, and 73.5% using a curing acid-to-solid ratio of 1:1, curing temperature of 200 °C, curing time of 1 h, H2SO4 concentration of 98%, leaching liquid-to-solid ratio of 4:1, leaching time of 2 h, leaching temperature of 60 °C, and leaching H2SO4 concentration of 5 g/L. A “sulfuric acid curing–leaching-U extraction by N235–Nb recovery by resin adsorption–REMs’ recovery by resin adsorption” method was implemented, where the overall U, Nb, and REMs’ recovery reached 93.1%, 84.5%, and 69.6%, respectively.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"23 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11010007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfuric acid curing and leaching is a promising technology for treating refractory ores. In this work, a refractory concentrate containing 3191 ppm uranium (U), 2135 ppm niobium (Nb), and 0.7% rare earth minerals (REMs) went through two stages: curing by high-concentration H2SO4 and leaching by low-concentration H2SO4. We investigated the behavior of those valuable metals during the two stages. For both curing and leaching, the operating parameters include the acid-to-solid ratio, time, temperature, and H2SO4 concentration. The recovery for U, Nb, and REMs was as high as 95%, 86%, and 73.5% using a curing acid-to-solid ratio of 1:1, curing temperature of 200 °C, curing time of 1 h, H2SO4 concentration of 98%, leaching liquid-to-solid ratio of 4:1, leaching time of 2 h, leaching temperature of 60 °C, and leaching H2SO4 concentration of 5 g/L. A “sulfuric acid curing–leaching-U extraction by N235–Nb recovery by resin adsorption–REMs’ recovery by resin adsorption” method was implemented, where the overall U, Nb, and REMs’ recovery reached 93.1%, 84.5%, and 69.6%, respectively.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization