Design of Fractional Verhulst Model for Displacement Prediction of Landslide Based on the Optimization of Beetle Antennae Algorithm

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-12-22 DOI:10.5755/j01.itc.52.4.33712
Xiaoping Yang, Zhehong Li, Kai Tan, Xing Zhu, Guanghui Liu, Li Jiang
{"title":"Design of Fractional Verhulst Model for Displacement Prediction of Landslide Based on the Optimization of Beetle Antennae Algorithm","authors":"Xiaoping Yang, Zhehong Li, Kai Tan, Xing Zhu, Guanghui Liu, Li Jiang","doi":"10.5755/j01.itc.52.4.33712","DOIUrl":null,"url":null,"abstract":"Landslides significantly impact economic development and public safety. Aiming at the problem of insufficient prediction accuracy of the displacement data series of the traditional grey Verhulst model, this paper proposes a fractional Verhulst model optimized using the beetle tentacle search algorithm. First, based on the grey Verhulst model, a fractional order operator is introduced to accurately adjust the magnitude between cumulative values, constructing a fractional order-based grey Verhulst model. Expanding the accumulative order range improves prediction performance. Second, the fractional operator is optimized. The beetle antennae search algorithm finds the optimal fractional order between 0 and 1 in the grey Verhulst model, minimizing average relative error. Finally, using Heifangtai landslide group displacement data from Gansu Province, simulation experiments verified that the model has higher fitting accuracy and prediction effect than the traditional grey Verhulst model, Huang's improved Verhulst model, GM (1,1) model, cubic exponential smoothing model, and DGM (2,1) model. The average relative error is 2.949 %. Results show that the beetle antennae search algorithm optimized fractional order grey prediction model significantly improves fitting and prediction effect on data. The optimized fractional Verhulst model is more suitable for predicting landslide displacement deformation.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"71 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.4.33712","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides significantly impact economic development and public safety. Aiming at the problem of insufficient prediction accuracy of the displacement data series of the traditional grey Verhulst model, this paper proposes a fractional Verhulst model optimized using the beetle tentacle search algorithm. First, based on the grey Verhulst model, a fractional order operator is introduced to accurately adjust the magnitude between cumulative values, constructing a fractional order-based grey Verhulst model. Expanding the accumulative order range improves prediction performance. Second, the fractional operator is optimized. The beetle antennae search algorithm finds the optimal fractional order between 0 and 1 in the grey Verhulst model, minimizing average relative error. Finally, using Heifangtai landslide group displacement data from Gansu Province, simulation experiments verified that the model has higher fitting accuracy and prediction effect than the traditional grey Verhulst model, Huang's improved Verhulst model, GM (1,1) model, cubic exponential smoothing model, and DGM (2,1) model. The average relative error is 2.949 %. Results show that the beetle antennae search algorithm optimized fractional order grey prediction model significantly improves fitting and prediction effect on data. The optimized fractional Verhulst model is more suitable for predicting landslide displacement deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于甲虫天线算法优化的用于滑坡位移预测的分数维赫斯特模型设计
滑坡严重影响经济发展和公共安全。针对传统灰色 Verhulst 模型位移数据序列预测精度不足的问题,本文提出了利用甲虫触角搜索算法优化的分数 Verhulst 模型。首先,在灰色 Verhulst 模型的基础上,引入分数阶算子,精确调整累积值之间的大小,构建基于分数阶的灰色 Verhulst 模型。扩大累加阶范围可提高预测性能。其次,对分数算子进行优化。甲虫触角搜索算法在灰色 Verhulst 模型中找到介于 0 和 1 之间的最佳分数阶,使平均相对误差最小。最后,利用甘肃省黑方台滑坡群位移数据进行模拟实验,验证了该模型比传统灰色 Verhulst 模型、黄氏改进 Verhulst 模型、GM (1,1) 模型、三次指数平滑模型和 DGM (2,1) 模型具有更高的拟合精度和预测效果。平均相对误差为 2.949%。结果表明,甲虫触角搜索算法优化的分数阶灰色预测模型显著提高了对数据的拟合和预测效果。优化后的分数Verhulst模型更适合预测滑坡位移变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1