USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS

Konrad Witkowski, Mikołaj Wieczorek
{"title":"USAGE OF ARTIFICIAL NEURAL NETWORKS IN THE DIAGNOSIS OF KNEE JOINT DISORDERS","authors":"Konrad Witkowski, Mikołaj Wieczorek","doi":"10.35784/iapgos.5380","DOIUrl":null,"url":null,"abstract":"Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed that for certain abnormalities our models can achieve up to 90% accuracy.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"41 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Following article address the issue of automatic knee disorder diagnose with usage of neural networks. We proposed several hybrid neural net architectures which aim to successfully classify abnormality using MRI (magnetic resonance imaging) images acquired from publicly available dataset. To construct such combinations of models we used pretrained Alexnet, Resnet18 and Resnet34 downloaded from Torchvision. Experiments showed that for certain abnormalities our models can achieve up to 90% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络在膝关节疾病诊断中的应用
以下文章探讨了利用神经网络自动诊断膝关节疾病的问题。我们提出了几种混合神经网络架构,旨在利用从公开数据集获取的 MRI(磁共振成像)图像成功地对异常情况进行分类。为了构建这样的模型组合,我们使用了从 Torchvision 下载的预训练 Alexnet、Resnet18 和 Resnet34。实验表明,对于某些异常情况,我们的模型可以达到 90% 的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS METODA OBLICZANIA WSKAŹNIKA BEZPIECZEŃSTWA INFORMACJI W MEDIACH SPOŁECZNOŚCIOWYCH Z UWZGLĘDNIENIEM DŁUGOŚCI ŚCIEŻKI MIĘDZY KLIENTAMI INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1