INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM

D. Darkenbayev, A. Altybay, Zhaidargul Darkenbayeva, N. Mekebayev
{"title":"INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM","authors":"D. Darkenbayev, A. Altybay, Zhaidargul Darkenbayeva, N. Mekebayev","doi":"10.35784/iapgos.5423","DOIUrl":null,"url":null,"abstract":"The article discusses methods for processing unstructured data using an analytical platform. The authors analyze existing methods and technologies used to implement data processing and propose new approaches to solving this problem. The possibilities of using analytical platforms to solve the problem of processing source data are considered. The purpose of the article is to explore the possibilities of data import, partial preprocessing, missing data recovery, anomaly removal, spectral processing and noise removal. The authors explored how analytics platforms can function without a data warehouse, obtaining information from any other sources, but the most optimal way is to use them together, and how big data and unstructured data can be processed using an analytics platform. The authors solved a specific problem related to processing problems and proposed ways to solve them using an analytical platform. Particular attention is paid to a complete set of mechanisms that allows you to obtain information from any data source, carry out the entire processing cycle and display the results. Overall, the paper represents an important contribution to the development of raw data processing technologies. The authors plan to continue research in the field of processing big unstructured data.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"29 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses methods for processing unstructured data using an analytical platform. The authors analyze existing methods and technologies used to implement data processing and propose new approaches to solving this problem. The possibilities of using analytical platforms to solve the problem of processing source data are considered. The purpose of the article is to explore the possibilities of data import, partial preprocessing, missing data recovery, anomaly removal, spectral processing and noise removal. The authors explored how analytics platforms can function without a data warehouse, obtaining information from any other sources, but the most optimal way is to use them together, and how big data and unstructured data can be processed using an analytics platform. The authors solved a specific problem related to processing problems and proposed ways to solve them using an analytical platform. Particular attention is paid to a complete set of mechanisms that allows you to obtain information from any data source, carry out the entire processing cycle and display the results. Overall, the paper represents an important contribution to the development of raw data processing technologies. The authors plan to continue research in the field of processing big unstructured data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析平台上的智能数据分析
文章讨论了利用分析平台处理非结构化数据的方法。作者分析了用于实施数据处理的现有方法和技术,并提出了解决这一问题的新方法。文章考虑了使用分析平台解决源数据处理问题的可能性。文章的目的是探讨数据导入、部分预处理、缺失数据恢复、异常消除、频谱处理和噪声消除的可能性。作者探讨了分析平台如何在没有数据仓库的情况下发挥作用,如何从任何其他来源获取信息,但最理想的方式是将它们结合起来使用,以及如何使用分析平台处理大数据和非结构化数据。作者解决了一个与处理问题相关的具体问题,并提出了使用分析平台解决这些问题的方法。其中特别关注了一套完整的机制,该机制允许您从任何数据源获取信息、执行整个处理周期并显示结果。总之,本文是对原始数据处理技术发展的重要贡献。作者计划继续在非结构化大数据处理领域开展研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS METODA OBLICZANIA WSKAŹNIKA BEZPIECZEŃSTWA INFORMACJI W MEDIACH SPOŁECZNOŚCIOWYCH Z UWZGLĘDNIENIEM DŁUGOŚCI ŚCIEŻKI MIĘDZY KLIENTAMI INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1