Analyzing Engine Exhaust Gas Temperature Pulsations and Gas-Dynamics Using Thin-Wire Thermocouples

Varun Venkataraman, Beichuan Hong, A. Cronhjort
{"title":"Analyzing Engine Exhaust Gas Temperature Pulsations and Gas-Dynamics Using Thin-Wire Thermocouples","authors":"Varun Venkataraman, Beichuan Hong, A. Cronhjort","doi":"10.1115/1.4064314","DOIUrl":null,"url":null,"abstract":"The exhaust of internal combustion engines (ICEs) is characterized by rapid large amplitude exhaust gas temperature (EGT) pulsations that demand high-bandwidth measurements for accurate instantaneous and mean EGTs. While measurement technique challenges constrain on-engine EGT pulse measurements, reduced-order system simulations numerically estimate the EGT pulse and its mean to overcome the measurement limitation. Notwithstanding high-bandwidth pressure measurements, model calibration and validation for the EGT are confined to mean indications using sheathed thermal sensors like thermocouples and resistance thermometers. These EGT measurements are susceptible to errors caused by heat transfer, flow unsteadiness, and the thermal inertia of the sensor. Exposed thin-wire thermocouples provide an intermediate solution to the robustness-to-response tradeoff of thermal sensors. While the thermocouples' thermal inertia significantly affects the measured EGT pulse, the signal derivative (un-scaled dynamic error) provides greater insight by indicating the EGT waveform. This study utilizes a 50.8~$\\mu$m Type-K thermocouple to contrast the exhaust pressure and EGT pulses through the measured signal and its derivative. Experiments in a single-pipe exhaust of a heavy-duty diesel engine with isolated engine speed and load sweeps present significant differences between the pressure and indicative EGT waveforms. It also highlights a rapid pre-pulse fluctuation unique to the EGT pulse waveform caused by exhaust gas-dynamics and impacted by heat transfer. The study motivates the need for increased bandwidth EGT measurements to improve model validation of EGT pulse estimates while showcasing the utility of thin-wire thermocouples.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":"15 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exhaust of internal combustion engines (ICEs) is characterized by rapid large amplitude exhaust gas temperature (EGT) pulsations that demand high-bandwidth measurements for accurate instantaneous and mean EGTs. While measurement technique challenges constrain on-engine EGT pulse measurements, reduced-order system simulations numerically estimate the EGT pulse and its mean to overcome the measurement limitation. Notwithstanding high-bandwidth pressure measurements, model calibration and validation for the EGT are confined to mean indications using sheathed thermal sensors like thermocouples and resistance thermometers. These EGT measurements are susceptible to errors caused by heat transfer, flow unsteadiness, and the thermal inertia of the sensor. Exposed thin-wire thermocouples provide an intermediate solution to the robustness-to-response tradeoff of thermal sensors. While the thermocouples' thermal inertia significantly affects the measured EGT pulse, the signal derivative (un-scaled dynamic error) provides greater insight by indicating the EGT waveform. This study utilizes a 50.8~$\mu$m Type-K thermocouple to contrast the exhaust pressure and EGT pulses through the measured signal and its derivative. Experiments in a single-pipe exhaust of a heavy-duty diesel engine with isolated engine speed and load sweeps present significant differences between the pressure and indicative EGT waveforms. It also highlights a rapid pre-pulse fluctuation unique to the EGT pulse waveform caused by exhaust gas-dynamics and impacted by heat transfer. The study motivates the need for increased bandwidth EGT measurements to improve model validation of EGT pulse estimates while showcasing the utility of thin-wire thermocouples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用细线热电偶分析发动机废气温度脉动和气体动力学
内燃机(ICE)排气的特点是快速的大振幅排气温度(EGT)脉冲,需要高带宽测量才能获得精确的瞬时和平均 EGT。虽然测量技术方面的挑战限制了发动机上的 EGT 脉冲测量,但降阶系统模拟对 EGT 脉冲及其平均值进行了数值估算,从而克服了测量方面的限制。尽管进行了高带宽压力测量,但 EGT 的模型校准和验证仅限于使用热电偶和电阻温度计等护套热传感器进行平均指示。这些 EGT 测量容易受到热传导、流动不稳定性和传感器热惯性的影响而产生误差。裸露细线热电偶为热传感器的鲁棒性与响应性之间的权衡提供了一种中间解决方案。虽然热电偶的热惯性对测量的 EGT 脉冲有很大影响,但信号导数(无标度动态误差)通过显示 EGT 波形提供了更深入的了解。本研究使用 50.8~$\mu$m 的 Type-K 热电偶,通过测量信号及其导数对比排气压力和 EGT 脉冲。在一台重型柴油发动机的单管排气中进行的实验表明,发动机转速和负载扫描之间的压力波形与指示性 EGT 波形之间存在显著差异。实验还强调了 EGT 脉冲波形特有的快速脉冲前波动,这种波动是由废气动力学引起的,并受热传导的影响。这项研究表明,需要增加 EGT 测量带宽,以改进 EGT 脉冲估计的模型验证,同时展示细线热电偶的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1