Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry

Etienne Lameloise, B. Cuenot, E. Riber, Aurélien Perrier, Gilles Cabot, Frédéric Grisch
{"title":"Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry","authors":"Etienne Lameloise, B. Cuenot, E. Riber, Aurélien Perrier, Gilles Cabot, Frédéric Grisch","doi":"10.1115/1.4066029","DOIUrl":null,"url":null,"abstract":"\n The present work proposes a methodology to include accurate kinetics for soot modeling taking into account real fuel complexity in Large Eddy Simulation of aeronautical engines at a reasonable computational cost. The methodology is based on the construction of an analytically reduced kinetic mechanism describing both combustion and gaseous soot precursors growth with sufficient accuracy on selected target properties. This is achieved in several steps, starting from the selection of the detailed kinetic model for combustion and soot precursors growth, followed by the determination of a fuel surrogate model describing the complex real fuel blend. Finally the selected kinetic model is analytically reduced with the code ARCANE while controlling the error on flame properties and soot prediction for the considered fuel surrogate. To perform all evaluation and reduction tests on canonical sooting flames, a Discrete Sectional Model for soot has been implemented in Cantera. The resulting code (Cantera-soot) is now available for the fast calculation of soot production in laminar flames for any fuel. The obtained reduced kinetic scheme is finally validated in a Rich-Quench-Lean burner of the literature in terms of soot prediction capabilities by comparison of LES coupled to the Lagrangian Soot Tracking model with measurements. Results show a significant improvement of the soot level prediction when using the reduced more realistic kinetics, which also allows a more detailed analysis of the soot emission mechanisms. This demonstrates the gain in accuracy obtained with improved reduced kinetics, and validates the methodology to build such schemes.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4066029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present work proposes a methodology to include accurate kinetics for soot modeling taking into account real fuel complexity in Large Eddy Simulation of aeronautical engines at a reasonable computational cost. The methodology is based on the construction of an analytically reduced kinetic mechanism describing both combustion and gaseous soot precursors growth with sufficient accuracy on selected target properties. This is achieved in several steps, starting from the selection of the detailed kinetic model for combustion and soot precursors growth, followed by the determination of a fuel surrogate model describing the complex real fuel blend. Finally the selected kinetic model is analytically reduced with the code ARCANE while controlling the error on flame properties and soot prediction for the considered fuel surrogate. To perform all evaluation and reduction tests on canonical sooting flames, a Discrete Sectional Model for soot has been implemented in Cantera. The resulting code (Cantera-soot) is now available for the fast calculation of soot production in laminar flames for any fuel. The obtained reduced kinetic scheme is finally validated in a Rich-Quench-Lean burner of the literature in terms of soot prediction capabilities by comparison of LES coupled to the Lagrangian Soot Tracking model with measurements. Results show a significant improvement of the soot level prediction when using the reduced more realistic kinetics, which also allows a more detailed analysis of the soot emission mechanisms. This demonstrates the gain in accuracy obtained with improved reduced kinetics, and validates the methodology to build such schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用半精细 Jeta-1 化学预测 RQL 燃烧器中的烟尘
本研究提出了一种方法,在航空发动机大涡模拟中考虑到实际燃料的复杂性,以合理的计算成本将精确的动力学纳入烟尘建模。该方法的基础是构建一个分析减少的动力学机制,描述燃烧和气态烟尘前体的生长,并对选定的目标特性有足够的准确性。这一过程分为几个步骤,首先是选择详细的燃烧和烟尘前体生长动力学模型,然后是确定描述复杂实际混合燃料的燃料替代模型。最后,使用 ARCANE 代码对选定的动力学模型进行分析还原,同时控制所考虑的燃料代用物的火焰特性和烟尘预测误差。为了对典型烟尘火焰进行所有评估和还原测试,在 Cantera 中实施了烟尘离散截面模型。由此产生的代码(Cantera-soot)现在可用于快速计算任何燃料在层流火焰中的烟尘生成。通过将 LES 与拉格朗日烟尘跟踪模型和测量结果进行比较,最终在文献中的 Rich-Quench-Lean 燃烧器中验证了所获得的简化动力学方案的烟尘预测能力。结果表明,在使用更符合实际情况的简化动力学方案时,烟尘水平预测有了明显改善,同时还能对烟尘排放机制进行更详细的分析。这表明使用改进的还原动力学可以提高精度,并验证了建立此类方案的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1