AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION

Mamun Ahmed, Salma Binta Islam, Aftab Uddin Alif, Mirajul Islam, Sabrina Motin Saima
{"title":"AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION","authors":"Mamun Ahmed, Salma Binta Islam, Aftab Uddin Alif, Mirajul Islam, Sabrina Motin Saima","doi":"10.35784/iapgos.5366","DOIUrl":null,"url":null,"abstract":"Pemphigus is a skin disease that can cause a serious damage to human skin. Pemphigus can result in other issues including painful patches and infected blisters, which can result in sepsis, weight loss, and starvation, all of which can be life-threatening, tooth decay and gum disease. Early prediction of Pemphigus may save us from fatal disease. Machine learning has the potential to offer a highly efficient approach for decision-making and precise forecasting. The healthcare sector is experiencing remarkable advancements through the utilization of machine learning techniques. Therefore, to identify Pemphigus using images, we suggested machine learning-based techniques. This proposed system uses a large dataset collected from various web sources to detect Pemphigus. Augmentation has been applied on our dataset using techniques such as zoom, flip, brightness, distortion, magnitude, height, width to enhance the breadth and variety of the dataset and improve model’s performance. Five popular machine learning algorithms has been employed to train and evaluate model, these are K-Nearest Neighbor (referred to as KNN), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), and Convolutional Neural Network (CNN). Our outcome indicate that the CNN based model outperformed the other algorithms by achieving accuracy of 93% whereas LR, KNN, RF and DT achieved accuracies of 78%, 70%, 85% and 75% respectively.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"16 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pemphigus is a skin disease that can cause a serious damage to human skin. Pemphigus can result in other issues including painful patches and infected blisters, which can result in sepsis, weight loss, and starvation, all of which can be life-threatening, tooth decay and gum disease. Early prediction of Pemphigus may save us from fatal disease. Machine learning has the potential to offer a highly efficient approach for decision-making and precise forecasting. The healthcare sector is experiencing remarkable advancements through the utilization of machine learning techniques. Therefore, to identify Pemphigus using images, we suggested machine learning-based techniques. This proposed system uses a large dataset collected from various web sources to detect Pemphigus. Augmentation has been applied on our dataset using techniques such as zoom, flip, brightness, distortion, magnitude, height, width to enhance the breadth and variety of the dataset and improve model’s performance. Five popular machine learning algorithms has been employed to train and evaluate model, these are K-Nearest Neighbor (referred to as KNN), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), and Convolutional Neural Network (CNN). Our outcome indicate that the CNN based model outperformed the other algorithms by achieving accuracy of 93% whereas LR, KNN, RF and DT achieved accuracies of 78%, 70%, 85% and 75% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天疱疮的人工智能诊断:自动皮肤病变检测的机器学习方法
丘疹性荨麻疹是一种可对人体皮肤造成严重损害的皮肤病。丘疹性荨麻疹还可能导致其他问题,包括疼痛的斑块和感染的水疱,这可能导致败血症、体重减轻和饥饿,所有这些都可能危及生命、蛀牙和牙龈疾病。对丘疹性荨麻疹的早期预测可能会使我们免于致命疾病。机器学习有可能为决策和精确预测提供一种高效的方法。通过利用机器学习技术,医疗保健领域正在取得显著进步。因此,为了利用图像识别丘疹性荨麻疹,我们提出了基于机器学习的技术。该拟议系统使用从各种网络来源收集的大型数据集来检测丘疹性荨麻疹。我们使用缩放、翻转、亮度、失真、幅度、高度、宽度等技术对数据集进行了增强,以提高数据集的广度和多样性,并改善模型的性能。我们采用了五种流行的机器学习算法来训练和评估模型,它们是 K-近邻(简称 KNN)、决策树(DT)、逻辑回归(LR)、随机森林(RF)和卷积神经网络(CNN)。结果表明,基于 CNN 的模型准确率达到 93%,优于其他算法,而 LR、KNN、RF 和 DT 的准确率分别为 78%、70%、85% 和 75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS METODA OBLICZANIA WSKAŹNIKA BEZPIECZEŃSTWA INFORMACJI W MEDIACH SPOŁECZNOŚCIOWYCH Z UWZGLĘDNIENIEM DŁUGOŚCI ŚCIEŻKI MIĘDZY KLIENTAMI INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1