Machine Learning-based Gait Analysis to Predict Clinical Frailty Scale in Elderly Patients with Heart Failure

Y. Mizuguchi, M. Nakao, T. Nagai, Y. Takahashi, Takahiro Abe, Shigeo Kakinoki, S. Imagawa, Kenichi Matsutani, Takahiko Saito, Masashige Takahashi, Yoshiya Kato, Hirokazu Komoriyama, H. Hagiwara, Kenji Hirata, Takahiro Ogawa, Takuto Shimizu, Manabu Otsu, Kunihiro Chiyo, Toshihisa Anzai
{"title":"Machine Learning-based Gait Analysis to Predict Clinical Frailty Scale in Elderly Patients with Heart Failure","authors":"Y. Mizuguchi, M. Nakao, T. Nagai, Y. Takahashi, Takahiro Abe, Shigeo Kakinoki, S. Imagawa, Kenichi Matsutani, Takahiko Saito, Masashige Takahashi, Yoshiya Kato, Hirokazu Komoriyama, H. Hagiwara, Kenji Hirata, Takahiro Ogawa, Takuto Shimizu, Manabu Otsu, Kunihiro Chiyo, Toshihisa Anzai","doi":"10.1093/ehjdh/ztad082","DOIUrl":null,"url":null,"abstract":"Although frailty assessment is recommended for guiding treatment strategies and outcome prediction in elderly patients with heart failure (HF), most frailty scales are subjective and the scores vary among raters. We sought to develop a machine learning-based automatic rating method/system/model of the clinical frailty scale (CFS) for patients with HF. We prospectively examined 417 elderly (≥75 years) with symptomatic chronic HF patients from seven centers between January 2019 and October 2023. The patients were divided into derivation (n = 194) and validation (n = 223) cohorts. We obtained body-tracking motion data using a deep learning-based pose estimation library, on a smartphone camera. Predicted CFS was calculated from 128 key features, including gait parameters, using the Light Gradient Boosting Machine (LightGBM) model. To evaluate the performance of this model, we calculated Cohen’s weighted kappa (CWK) and intraclass correlation coefficient (ICC) between the predicted and actual CFSs. In the derivation and validation datasets, the LightGBM models showed excellent agreements between the actual and predicted CFSs (CWK 0.866, 95% CI 0.807-0.911; ICC 0.866, 95% CI 0.827-0.898; CWK 0.812, 95% CI 0.752-0.868; ICC 0.813, 95% CI 0.761-0.854, respectively). During a median follow-up period of 391 (IQR 273-617) days, the higher predicted CFS was independently associated with a higher risk of all-cause death (HR 1.60, 95% CI 1.02-2.50) after adjusting for significant prognostic covariates. Machine learning-based algorithms of automatically CFS rating are feasible, and the predicted CFS is associated with the risk of all-cause death in elderly patients with HF.","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"49 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztad082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although frailty assessment is recommended for guiding treatment strategies and outcome prediction in elderly patients with heart failure (HF), most frailty scales are subjective and the scores vary among raters. We sought to develop a machine learning-based automatic rating method/system/model of the clinical frailty scale (CFS) for patients with HF. We prospectively examined 417 elderly (≥75 years) with symptomatic chronic HF patients from seven centers between January 2019 and October 2023. The patients were divided into derivation (n = 194) and validation (n = 223) cohorts. We obtained body-tracking motion data using a deep learning-based pose estimation library, on a smartphone camera. Predicted CFS was calculated from 128 key features, including gait parameters, using the Light Gradient Boosting Machine (LightGBM) model. To evaluate the performance of this model, we calculated Cohen’s weighted kappa (CWK) and intraclass correlation coefficient (ICC) between the predicted and actual CFSs. In the derivation and validation datasets, the LightGBM models showed excellent agreements between the actual and predicted CFSs (CWK 0.866, 95% CI 0.807-0.911; ICC 0.866, 95% CI 0.827-0.898; CWK 0.812, 95% CI 0.752-0.868; ICC 0.813, 95% CI 0.761-0.854, respectively). During a median follow-up period of 391 (IQR 273-617) days, the higher predicted CFS was independently associated with a higher risk of all-cause death (HR 1.60, 95% CI 1.02-2.50) after adjusting for significant prognostic covariates. Machine learning-based algorithms of automatically CFS rating are feasible, and the predicted CFS is associated with the risk of all-cause death in elderly patients with HF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的步态分析预测老年心力衰竭患者的临床虚弱量表
虽然虚弱程度评估被推荐用于指导老年心力衰竭(HF)患者的治疗策略和预后预测,但大多数虚弱程度量表都是主观的,而且不同评分者的评分也不尽相同。我们试图为心衰患者开发一种基于机器学习的临床虚弱量表(CFS)自动评分方法/系统/模型。 我们在 2019 年 1 月至 2023 年 10 月期间对来自七个中心的 417 名老年(≥75 岁)有症状的慢性心房颤动患者进行了前瞻性研究。患者被分为推导组(194 人)和验证组(223 人)。我们使用基于深度学习的姿势估计库,在智能手机摄像头上获取了身体追踪运动数据。利用光梯度提升机(LightGBM)模型,通过包括步态参数在内的 128 个关键特征计算出预测的 CFS。为了评估该模型的性能,我们计算了预测和实际 CFS 之间的科恩加权卡帕(CWK)和类内相关系数(ICC)。在推导数据集和验证数据集中,LightGBM 模型在实际 CFS 与预测 CFS 之间显示出极佳的一致性(CWK 0.866,95% CI 0.807-0.911;ICC 0.866,95% CI 0.827-0.898;CWK 0.812,95% CI 0.752-0.868;ICC 0.813,95% CI 0.761-0.854)。中位随访期为 391 天(IQR 273-617 天),在调整重要的预后协变量后,预测 CFS 越高,全因死亡风险越高(HR 1.60,95% CI 1.02-2.50)。 基于机器学习的CFS自动评级算法是可行的,预测的CFS与老年心房颤动患者的全因死亡风险相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data Why Thorough Open Data Descriptions Matters More Than Ever in the Age of AI: Opportunities for Cardiovascular Research Meet Key Digital Health thought leaders: Jagmeet (Jag) Singh Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset Effect of Urban Environment on Cardiovascular Health: A Feasibility Pilot Study using Machine Learning to Predict Heart Rate Variability in Heart Failure Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1