Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset

M. Tokodi, A. Kosztin, Attila Kovács, László Gellér, W. Schwertner, B. Veres, A. Behon, Christiane Lober, Nigussie Bogale, Cecilia Linde, C. Normand, Kenneth Dickstein, B. Merkely
{"title":"Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset","authors":"M. Tokodi, A. Kosztin, Attila Kovács, László Gellér, W. Schwertner, B. Veres, A. Behon, Christiane Lober, Nigussie Bogale, Cecilia Linde, C. Normand, Kenneth Dickstein, B. Merkely","doi":"10.1093/ehjdh/ztae051","DOIUrl":null,"url":null,"abstract":"\n \n \n We aimed to externally validate the SEMMELWEIS-CRT score for predicting 1-year all-cause mortality in the European Cardiac Resynchronization Therapy (CRT) Survey I dataset – a large multi-center cohort of patients undergoing CRT implantation.\n \n \n \n The SEMMELWEIS-CRT score is a machine learning-based tool trained for predicting all-cause mortality in patients undergoing CRT implantation. This tool demonstrated impressive performance during internal validation but has not yet been validated externally. To this end, we applied it to the data of 1,367 patients from the European CRT Survey I dataset. The SEMMELWEIS-CRT predicted 1-year mortality with an area under the receiver operating characteristic curve (AUC) of 0.729 [0.682–0.776], which concurred with the performance measured during internal validation (AUC: 0.768 [0.674–0.861], p=0.466). Moreover, the SEMMELWEIS-CRT score outperformed multiple conventional statistics-based risk scores, and we demonstrated that a higher predicted probability is not only associated with a higher risk of death (odds ratio [OR]: 1.081 [1.061–1.101], p<0.001) but also with an increased risk of hospitalizations for any cause (OR: 1.013 [1.002–1.025], p=0.020) or for heart failure (OR: 1.033 [1.015–1.052], p<0.001), a less than 5% improvement in left ventricular ejection fraction (OR: 1.033 [1.021–1.047], p<0.001), and lack of improvement in NYHA functional class compared to baseline (OR: 1.018 [1.006–1.029], p=0.003).\n \n \n \n In the European CRT Survey I dataset, the SEMMELWEIS-CRT score predicted 1-year all-cause mortality with good discriminatory power, which confirms the generalizability and demonstrates the potential clinical utility of this machine learning-based risk stratification tool.\n","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"60 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to externally validate the SEMMELWEIS-CRT score for predicting 1-year all-cause mortality in the European Cardiac Resynchronization Therapy (CRT) Survey I dataset – a large multi-center cohort of patients undergoing CRT implantation. The SEMMELWEIS-CRT score is a machine learning-based tool trained for predicting all-cause mortality in patients undergoing CRT implantation. This tool demonstrated impressive performance during internal validation but has not yet been validated externally. To this end, we applied it to the data of 1,367 patients from the European CRT Survey I dataset. The SEMMELWEIS-CRT predicted 1-year mortality with an area under the receiver operating characteristic curve (AUC) of 0.729 [0.682–0.776], which concurred with the performance measured during internal validation (AUC: 0.768 [0.674–0.861], p=0.466). Moreover, the SEMMELWEIS-CRT score outperformed multiple conventional statistics-based risk scores, and we demonstrated that a higher predicted probability is not only associated with a higher risk of death (odds ratio [OR]: 1.081 [1.061–1.101], p<0.001) but also with an increased risk of hospitalizations for any cause (OR: 1.013 [1.002–1.025], p=0.020) or for heart failure (OR: 1.033 [1.015–1.052], p<0.001), a less than 5% improvement in left ventricular ejection fraction (OR: 1.033 [1.021–1.047], p<0.001), and lack of improvement in NYHA functional class compared to baseline (OR: 1.018 [1.006–1.029], p=0.003). In the European CRT Survey I dataset, the SEMMELWEIS-CRT score predicted 1-year all-cause mortality with good discriminatory power, which confirms the generalizability and demonstrates the potential clinical utility of this machine learning-based risk stratification tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习预测接受 CRT 植入术患者的 1 年全因死亡率:欧洲 CRT 调查 I 数据集中的 SEMMELWEIS-CRT 评分验证
我们的目的是在欧洲心脏再同步化治疗(CRT)调查 I 数据集中对 SEMMELWEIS-CRT 评分进行外部验证,以预测接受 CRT 植入术的大型多中心患者队列中的 1 年全因死亡率。 SEMMELWEIS-CRT 评分是一种基于机器学习的工具,经过训练可预测接受 CRT 植入术患者的全因死亡率。该工具在内部验证中表现出令人印象深刻的性能,但尚未进行外部验证。为此,我们将其应用于欧洲 CRT 调查 I 数据集中的 1367 名患者的数据。SEMMELWEIS-CRT预测1年死亡率的接收器操作特征曲线下面积(AUC)为0.729 [0.682-0.776],这与内部验证时测得的结果一致(AUC:0.768 [0.674-0.861],P=0.466)。此外,SEMMELWEIS-CRT 评分的表现优于多种基于传统统计学的风险评分,而且我们证明,预测概率越高,不仅死亡风险越高(比值比 [OR]:1.081 [1.061-1.101],p<0.001),而且因任何原因住院的风险也越高(比值比 [OR]:1.081 [1.061-1.101],p<0.001)。013[1.002-1.025],p=0.020)或心力衰竭(OR:1.033[1.015-1.052],p<0.001)、左室射血分数改善不足 5%(OR:1.033[1.021-1.047],p<0.001)以及 NYHA 功能分级与基线相比缺乏改善(OR:1.018[1.006-1.029],p=0.003)。 在欧洲CRT调查I数据集中,SEMMELWEIS-CRT评分能预测1年全因死亡率,具有良好的鉴别力,这证实了这种基于机器学习的风险分层工具的普适性,并证明了其潜在的临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting early-stage coronary artery disease using machine learning and routine clinical biomarkers improved by augmented virtual data Why Thorough Open Data Descriptions Matters More Than Ever in the Age of AI: Opportunities for Cardiovascular Research Meet Key Digital Health thought leaders: Jagmeet (Jag) Singh Machine learning-based prediction of 1-year all-cause mortality in patients undergoing CRT implantation: Validation of the SEMMELWEIS-CRT score in the European CRT Survey I dataset Effect of Urban Environment on Cardiovascular Health: A Feasibility Pilot Study using Machine Learning to Predict Heart Rate Variability in Heart Failure Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1