COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT

Oumaima Majdoubi, A. Benba, A. Hammouch
{"title":"COMPREHENSIVE MACHINE LEARNING AND DEEP LEARNING APPROACHES FOR PARKINSON'S DISEASE CLASSIFICATION AND SEVERITY ASSESSMENT","authors":"Oumaima Majdoubi, A. Benba, A. Hammouch","doi":"10.35784/iapgos.5309","DOIUrl":null,"url":null,"abstract":"In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.","PeriodicalId":504633,"journal":{"name":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/iapgos.5309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于帕金森病分类和严重程度评估的综合机器学习和深度学习方法
在本研究中,我们旨在利用机器学习和深度学习技术,采用一种综合方法来分类和评估帕金森病的严重程度。我们利用分类指标全面评估了各种模型的有效性,包括 XGBoost、随机森林、多层感知器(MLP)和循环神经网络(RNN)。我们生成了详细的报告,以便对这些模型进行全面的比较分析。值得注意的是,XGBoost 的精确度最高,达到 97.4%。此外,我们还进一步开发了门控递归单元(GRU)模型,目的是综合其他模型的预测结果。我们对其预测疾病严重程度的能力进行了评估。为了量化模型在疾病分类中的精确度,我们计算了严重程度百分比。此外,我们还为 GRU 模型绘制了接收者工作特征曲线 (ROC),从而简化了对其区分不同严重程度的能力的评估。这种综合方法有助于更准确、更详细地了解帕金森病的严重程度评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A COMPREHENSIVE STUDY: INTRACRANIAL ANEURYSM DETECTION VIA VGG16-DENSENET HYBRID DEEP LEARNING ON DSA IMAGES OPTICAL SPECKLE-FIELD VISIBILITY DIMINISHING BY REDUCTION OF A TEMPORAL COHERENCE TENSOR AND VECTOR APPROACHES TO OBJECTS RECOGNITION BY INVERSE FEATURE FILTERS METODA OBLICZANIA WSKAŹNIKA BEZPIECZEŃSTWA INFORMACJI W MEDIACH SPOŁECZNOŚCIOWYCH Z UWZGLĘDNIENIEM DŁUGOŚCI ŚCIEŻKI MIĘDZY KLIENTAMI INTELLIGENT DATA ANALYSIS ON AN ANALYTICAL PLATFORM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1