An Improved Heat Flux Partitioning Model of Nucleate Boiling Under Saturated Pool Boiling Condition

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-12-20 DOI:10.1115/1.4064337
Mingfu He, Minghui Chen
{"title":"An Improved Heat Flux Partitioning Model of Nucleate Boiling Under Saturated Pool Boiling Condition","authors":"Mingfu He, Minghui Chen","doi":"10.1115/1.4064337","DOIUrl":null,"url":null,"abstract":"An improved heat flux partitioning model of pool boiling is proposed in this study to predict the material-conjugated pool boiling curve. The fundamental rationale behind the improved model is that the heat convection is only governed by far-field mechanisms while the heat quenching and evaporation are partially subjected to near-field material-dependent mechanisms. The quenching heat flux is derived dependently on thermal-effusivities of solid and liquid respectively based on the transient heat conduction analyses. The evaporative heat flux correlates the material-dependent bubble dynamics parameters including bubble departure frequency and nucleation site density together to yield a new analytical form and support the theoretical reflections of material-conjugated boiling behaviors. The proposed model can approximately capture the material-related impacts on boiling heat transfer coefficients and simulate pool boiling curves validated by the use of experimental results.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An improved heat flux partitioning model of pool boiling is proposed in this study to predict the material-conjugated pool boiling curve. The fundamental rationale behind the improved model is that the heat convection is only governed by far-field mechanisms while the heat quenching and evaporation are partially subjected to near-field material-dependent mechanisms. The quenching heat flux is derived dependently on thermal-effusivities of solid and liquid respectively based on the transient heat conduction analyses. The evaporative heat flux correlates the material-dependent bubble dynamics parameters including bubble departure frequency and nucleation site density together to yield a new analytical form and support the theoretical reflections of material-conjugated boiling behaviors. The proposed model can approximately capture the material-related impacts on boiling heat transfer coefficients and simulate pool boiling curves validated by the use of experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饱和池沸腾条件下核沸腾的改进热通量分配模型
本研究提出了一种改进的池沸腾热通量分配模型,用于预测材料共轭池沸腾曲线。改进模型的基本原理是,热对流仅受远场机制的支配,而热淬灭和蒸发则部分受近场材料相关机制的支配。淬火热通量是根据瞬态热传导分析得出的,分别取决于固体和液体的热阻。蒸发热通量与依赖于材料的气泡动力学参数(包括气泡离去频率和成核点密度)相关联,从而产生一种新的分析形式,并支持材料共轭沸腾行为的理论反映。所提出的模型可以近似捕捉与材料相关的对沸腾传热系数的影响,并通过使用实验结果验证模拟池沸腾曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
期刊最新文献
Estimation of Turbulent Mixing Factor and Study of Turbulent Flow Structures in PWR Sub Channel by DNS Effect of Radial Neutron Reflector on the Characteristics of Nuclear Fuel Burn-up Wave in a Fast Neutron Energy Spectrum Multiplying Medium: A Consistent Parametric Approach Reviewing Welding Procedures - Checklists for Nuclear Power Systems Performance of NB-CTMFD detector vs Ludlum 42-49B, and Fuji NSN3 detectors for hard (Am-Be) and soft (Cf-252 fission) energy spectra neutron sources within lead/concrete shielded configurations Performance of B-CTMFD Detector Vs Ludlum 42-49B, Fuji NSN3 Detectors for Fission Energy Spectrum Neutron Detection with the Source within Lead/concrete Shielded Configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1