{"title":"Frequency diverse array signal generation based on dual optical frequency combs","authors":"Jiajun Tan, Xirui Zhong, Ruihao Wang, Weile Zhai, Yongsheng Gao","doi":"10.1117/12.3007313","DOIUrl":null,"url":null,"abstract":"To overcome the limitation of the phased array (PA), the frequency diverse array (FDA) was introduced that can provide precise scanning in distance and angle domains. Utilizing microwave photonics (MWP), a FDA signal generation method based on dual optical frequency combs (OFCs) is proposed in this paper. The scheme successfully generates a five-channel FDA signal with a center frequency of 8 GHz and a frequency offset of 1 MHz. With a power flatness below 2.5 dB and a spurious suppression ratio exceed 27.2 dB, the method demonstrates ability to generate high-quality FDA signal and realize beam forming and scanning. Additionally, the radiation pattern shows a distinct “S” shape, influenced by distance and angle.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"1 5","pages":"129661G - 129661G-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the limitation of the phased array (PA), the frequency diverse array (FDA) was introduced that can provide precise scanning in distance and angle domains. Utilizing microwave photonics (MWP), a FDA signal generation method based on dual optical frequency combs (OFCs) is proposed in this paper. The scheme successfully generates a five-channel FDA signal with a center frequency of 8 GHz and a frequency offset of 1 MHz. With a power flatness below 2.5 dB and a spurious suppression ratio exceed 27.2 dB, the method demonstrates ability to generate high-quality FDA signal and realize beam forming and scanning. Additionally, the radiation pattern shows a distinct “S” shape, influenced by distance and angle.